Merge pull request #333 from ollama-webui/rag

feat: RAG support
This commit is contained in:
Timothy Jaeryang Baek 2024-01-07 02:50:32 -08:00 committed by GitHub
commit 34e0f64fb3
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
15 changed files with 659 additions and 112 deletions

View file

@ -10,7 +10,7 @@ RUN npm ci
COPY . .
RUN npm run build
FROM python:3.11-slim-buster as base
FROM python:3.11-bookworm as base
ENV ENV=prod

View file

@ -33,6 +33,8 @@ Also check our sibling project, [OllamaHub](https://ollamahub.com/), where you c
- ✒️🔢 **Full Markdown and LaTeX Support**: Elevate your LLM experience with comprehensive Markdown and LaTeX capabilities for enriched interaction.
- 📚 **RAG Integration (Alpha)**: Immerse yourself in cutting-edge Retrieval Augmented Generation support, revolutionizing your chat experience by seamlessly incorporating document interactions. In its alpha phase, expect occasional issues as we actively refine and enhance this feature to ensure optimal performance and reliability.
- 📜 **Prompt Preset Support**: Instantly access preset prompts using the '/' command in the chat input. Load predefined conversation starters effortlessly and expedite your interactions. Effortlessly import prompts through [OllamaHub](https://ollamahub.com/) integration.
- 👍👎 **RLHF Annotation**: Empower your messages by rating them with thumbs up and thumbs down, facilitating the creation of datasets for Reinforcement Learning from Human Feedback (RLHF). Utilize your messages to train or fine-tune models, all while ensuring the confidentiality of locally saved data.
@ -243,7 +245,6 @@ See [TROUBLESHOOTING.md](/TROUBLESHOOTING.md) for information on how to troubles
Here are some exciting tasks on our roadmap:
- 📚 **RAG Integration**: Experience first-class retrieval augmented generation support, enabling chat with your documents.
- 🌐 **Web Browsing Capability**: Experience the convenience of seamlessly integrating web content directly into your chat. Easily browse and share information without leaving the conversation.
- 🔄 **Function Calling**: Empower your interactions by running code directly within the chat. Execute functions and commands effortlessly, enhancing the functionality of your conversations.
- ⚙️ **Custom Python Backend Actions**: Empower your Ollama Web UI by creating or downloading custom Python backend actions. Unleash the full potential of your web interface with tailored actions that suit your specific needs, enhancing functionality and versatility.

3
backend/.gitignore vendored
View file

@ -5,4 +5,5 @@ uploads
.ipynb_checkpoints
*.db
_test
Pipfile
Pipfile
data/*

207
backend/apps/rag/main.py Normal file
View file

@ -0,0 +1,207 @@
from fastapi import (
FastAPI,
Request,
Depends,
HTTPException,
status,
UploadFile,
File,
Form,
)
from fastapi.middleware.cors import CORSMiddleware
import os, shutil
from chromadb.utils import embedding_functions
from langchain_community.document_loaders import WebBaseLoader, TextLoader, PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import RetrievalQA
from pydantic import BaseModel
from typing import Optional
import uuid
from utils.utils import get_current_user
from config import UPLOAD_DIR, EMBED_MODEL, CHROMA_CLIENT, CHUNK_SIZE, CHUNK_OVERLAP
from constants import ERROR_MESSAGES
EMBEDDING_FUNC = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name=EMBED_MODEL
)
app = FastAPI()
origins = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class CollectionNameForm(BaseModel):
collection_name: Optional[str] = "test"
class StoreWebForm(CollectionNameForm):
url: str
def store_data_in_vector_db(data, collection_name) -> bool:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP
)
docs = text_splitter.split_documents(data)
texts = [doc.page_content for doc in docs]
metadatas = [doc.metadata for doc in docs]
try:
collection = CHROMA_CLIENT.create_collection(
name=collection_name, embedding_function=EMBEDDING_FUNC
)
collection.add(
documents=texts, metadatas=metadatas, ids=[str(uuid.uuid1()) for _ in texts]
)
return True
except Exception as e:
print(e)
if e.__class__.__name__ == "UniqueConstraintError":
return True
return False
@app.get("/")
async def get_status():
return {"status": True}
@app.get("/query/{collection_name}")
def query_collection(
collection_name: str,
query: str,
k: Optional[int] = 4,
user=Depends(get_current_user),
):
try:
collection = CHROMA_CLIENT.get_collection(
name=collection_name,
)
result = collection.query(query_texts=[query], n_results=k)
return result
except Exception as e:
print(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
@app.post("/web")
def store_web(form_data: StoreWebForm, user=Depends(get_current_user)):
# "https://www.gutenberg.org/files/1727/1727-h/1727-h.htm"
try:
loader = WebBaseLoader(form_data.url)
data = loader.load()
store_data_in_vector_db(data, form_data.collection_name)
return {"status": True, "collection_name": form_data.collection_name}
except Exception as e:
print(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
@app.post("/doc")
def store_doc(
collection_name: str = Form(...),
file: UploadFile = File(...),
user=Depends(get_current_user),
):
# "https://www.gutenberg.org/files/1727/1727-h/1727-h.htm"
file.filename = f"{collection_name}-{file.filename}"
if file.content_type not in ["application/pdf", "text/plain"]:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.FILE_NOT_SUPPORTED,
)
try:
filename = file.filename
file_path = f"{UPLOAD_DIR}/{filename}"
contents = file.file.read()
with open(file_path, "wb") as f:
f.write(contents)
f.close()
if file.content_type == "application/pdf":
loader = PyPDFLoader(file_path)
elif file.content_type == "text/plain":
loader = TextLoader(file_path)
data = loader.load()
result = store_data_in_vector_db(data, collection_name)
if result:
return {"status": True, "collection_name": collection_name}
else:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=ERROR_MESSAGES.DEFAULT(),
)
except Exception as e:
print(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
@app.get("/reset/db")
def reset_vector_db(user=Depends(get_current_user)):
if user.role == "admin":
CHROMA_CLIENT.reset()
else:
raise HTTPException(
status_code=status.HTTP_403_FORBIDDEN,
detail=ERROR_MESSAGES.ACCESS_PROHIBITED,
)
@app.get("/reset")
def reset(user=Depends(get_current_user)):
if user.role == "admin":
folder = f"{UPLOAD_DIR}"
for filename in os.listdir(folder):
file_path = os.path.join(folder, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print("Failed to delete %s. Reason: %s" % (file_path, e))
try:
CHROMA_CLIENT.reset()
except Exception as e:
print(e)
return {"status": True}
else:
raise HTTPException(
status_code=status.HTTP_403_FORBIDDEN,
detail=ERROR_MESSAGES.ACCESS_PROHIBITED,
)

View file

@ -1,14 +1,31 @@
from dotenv import load_dotenv, find_dotenv
import os
import chromadb
from chromadb import Settings
from constants import ERROR_MESSAGES
from secrets import token_bytes
from base64 import b64encode
import os
from constants import ERROR_MESSAGES
from pathlib import Path
load_dotenv(find_dotenv("../.env"))
####################################
# File Upload
####################################
UPLOAD_DIR = "./data/uploads"
Path(UPLOAD_DIR).mkdir(parents=True, exist_ok=True)
####################################
# ENV (dev,test,prod)
####################################
@ -19,8 +36,9 @@ ENV = os.environ.get("ENV", "dev")
# OLLAMA_API_BASE_URL
####################################
OLLAMA_API_BASE_URL = os.environ.get("OLLAMA_API_BASE_URL",
"http://localhost:11434/api")
OLLAMA_API_BASE_URL = os.environ.get(
"OLLAMA_API_BASE_URL", "http://localhost:11434/api"
)
if ENV == "prod":
if OLLAMA_API_BASE_URL == "/ollama/api":
@ -56,3 +74,15 @@ WEBUI_JWT_SECRET_KEY = os.environ.get("WEBUI_JWT_SECRET_KEY", "t0p-s3cr3t")
if WEBUI_AUTH and WEBUI_JWT_SECRET_KEY == "":
raise ValueError(ERROR_MESSAGES.ENV_VAR_NOT_FOUND)
####################################
# RAG
####################################
CHROMA_DATA_PATH = "./data/vector_db"
EMBED_MODEL = "all-MiniLM-L6-v2"
CHROMA_CLIENT = chromadb.PersistentClient(
path=CHROMA_DATA_PATH, settings=Settings(allow_reset=True)
)
CHUNK_SIZE = 1500
CHUNK_OVERLAP = 100

View file

@ -6,7 +6,6 @@ class MESSAGES(str, Enum):
class ERROR_MESSAGES(str, Enum):
def __str__(self) -> str:
return super().__str__()
@ -30,7 +29,12 @@ class ERROR_MESSAGES(str, Enum):
UNAUTHORIZED = "401 Unauthorized"
ACCESS_PROHIBITED = "You do not have permission to access this resource. Please contact your administrator for assistance."
ACTION_PROHIBITED = (
"The requested action has been restricted as a security measure.")
"The requested action has been restricted as a security measure."
)
FILE_NOT_SENT = "FILE_NOT_SENT"
FILE_NOT_SUPPORTED = "Oops! It seems like the file format you're trying to upload is not supported. Please upload a file with a supported format (e.g., JPG, PNG, PDF, TXT) and try again."
NOT_FOUND = "We could not find what you're looking for :/"
USER_NOT_FOUND = "We could not find what you're looking for :/"
API_KEY_NOT_FOUND = "Oops! It looks like there's a hiccup. The API key is missing. Please make sure to provide a valid API key to access this feature."

View file

@ -1,3 +1,5 @@
import time
from fastapi import FastAPI, Request
from fastapi.staticfiles import StaticFiles
from fastapi import HTTPException
@ -5,16 +7,17 @@ from fastapi.middleware.wsgi import WSGIMiddleware
from fastapi.middleware.cors import CORSMiddleware
from starlette.exceptions import HTTPException as StarletteHTTPException
from apps.ollama.main import app as ollama_app
from apps.openai.main import app as openai_app
from apps.web.main import app as webui_app
from apps.rag.main import app as rag_app
import time
from config import ENV
class SPAStaticFiles(StaticFiles):
async def get_response(self, path: str, scope):
try:
return await super().get_response(path, scope)
@ -25,7 +28,7 @@ class SPAStaticFiles(StaticFiles):
raise ex
app = FastAPI()
app = FastAPI(docs_url="/docs" if ENV == "dev" else None, redoc_url=None)
origins = ["*"]
@ -49,9 +52,10 @@ async def check_url(request: Request, call_next):
app.mount("/api/v1", webui_app)
app.mount("/ollama/api", ollama_app)
app.mount("/openai/api", openai_app)
app.mount("/rag/api/v1", rag_app)
app.mount("/",
SPAStaticFiles(directory="../build", html=True),
name="spa-static-files")
app.mount("/", SPAStaticFiles(directory="../build", html=True), name="spa-static-files")

View file

@ -16,6 +16,13 @@ aiohttp
peewee
bcrypt
langchain
langchain-community
chromadb
sentence_transformers
pypdf
PyJWT
pyjwt[crypto]

105
src/lib/apis/rag/index.ts Normal file
View file

@ -0,0 +1,105 @@
import { RAG_API_BASE_URL } from '$lib/constants';
export const uploadDocToVectorDB = async (token: string, collection_name: string, file: File) => {
const data = new FormData();
data.append('file', file);
data.append('collection_name', collection_name);
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/doc`, {
method: 'POST',
headers: {
Accept: 'application/json',
authorization: `Bearer ${token}`
},
body: data
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
console.log(err);
return null;
});
if (error) {
throw error;
}
return res;
};
export const uploadWebToVectorDB = async (token: string, collection_name: string, url: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/web`, {
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
authorization: `Bearer ${token}`
},
body: JSON.stringify({
url: url,
collection_name: collection_name
})
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
console.log(err);
return null;
});
if (error) {
throw error;
}
return res;
};
export const queryVectorDB = async (
token: string,
collection_name: string,
query: string,
k: number
) => {
let error = null;
const searchParams = new URLSearchParams();
searchParams.set('query', query);
if (k) {
searchParams.set('k', k.toString());
}
const res = await fetch(
`${RAG_API_BASE_URL}/query/${collection_name}/?${searchParams.toString()}`,
{
method: 'GET',
headers: {
Accept: 'application/json',
authorization: `Bearer ${token}`
}
}
)
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
return null;
});
if (error) {
throw error;
}
return res;
};

View file

@ -2,10 +2,11 @@
import toast from 'svelte-french-toast';
import { onMount, tick } from 'svelte';
import { settings } from '$lib/stores';
import { findWordIndices } from '$lib/utils';
import { calculateSHA256, findWordIndices } from '$lib/utils';
import Prompts from './MessageInput/PromptCommands.svelte';
import Suggestions from './MessageInput/Suggestions.svelte';
import { uploadDocToVectorDB } from '$lib/apis/rag';
export let submitPrompt: Function;
export let stopResponse: Function;
@ -98,7 +99,7 @@
dragged = true;
});
dropZone.addEventListener('drop', (e) => {
dropZone.addEventListener('drop', async (e) => {
e.preventDefault();
console.log(e);
@ -115,14 +116,32 @@
];
};
if (
e.dataTransfer?.files &&
e.dataTransfer?.files.length > 0 &&
['image/gif', 'image/jpeg', 'image/png'].includes(e.dataTransfer?.files[0]['type'])
) {
reader.readAsDataURL(e.dataTransfer?.files[0]);
const inputFiles = e.dataTransfer?.files;
if (inputFiles && inputFiles.length > 0) {
const file = inputFiles[0];
if (['image/gif', 'image/jpeg', 'image/png'].includes(file['type'])) {
reader.readAsDataURL(file);
} else if (['application/pdf', 'text/plain'].includes(file['type'])) {
console.log(file);
const hash = (await calculateSHA256(file)).substring(0, 63);
const res = await uploadDocToVectorDB(localStorage.token, hash, file);
if (res) {
files = [
...files,
{
type: 'doc',
name: file.name,
collection_name: res.collection_name
}
];
}
} else {
toast.error(`Unsupported File Type '${file['type']}'.`);
}
} else {
toast.error(`Unsupported File Type '${e.dataTransfer?.files[0]['type']}'.`);
toast.error(`File not found.`);
}
}
@ -145,11 +164,11 @@
<div class="absolute rounded-xl w-full h-full backdrop-blur bg-gray-800/40 flex justify-center">
<div class="m-auto pt-64 flex flex-col justify-center">
<div class="max-w-md">
<div class=" text-center text-6xl mb-3">🏞</div>
<div class="text-center dark:text-white text-2xl font-semibold z-50">Add Images</div>
<div class=" text-center text-6xl mb-3">🗂</div>
<div class="text-center dark:text-white text-2xl font-semibold z-50">Add Files</div>
<div class=" mt-2 text-center text-sm dark:text-gray-200 w-full">
Drop any images here to add to the conversation
Drop any files/images here to add to the conversation
</div>
</div>
</div>
@ -204,7 +223,7 @@
bind:files={inputFiles}
type="file"
hidden
on:change={() => {
on:change={async () => {
let reader = new FileReader();
reader.onload = (event) => {
files = [
@ -218,15 +237,32 @@
filesInputElement.value = '';
};
if (
inputFiles &&
inputFiles.length > 0 &&
['image/gif', 'image/jpeg', 'image/png'].includes(inputFiles[0]['type'])
) {
reader.readAsDataURL(inputFiles[0]);
if (inputFiles && inputFiles.length > 0) {
const file = inputFiles[0];
if (['image/gif', 'image/jpeg', 'image/png'].includes(file['type'])) {
reader.readAsDataURL(file);
} else if (['application/pdf', 'text/plain'].includes(file['type'])) {
console.log(file);
const hash = (await calculateSHA256(file)).substring(0, 63);
const res = await uploadDocToVectorDB(localStorage.token, hash, file);
if (res) {
files = [
...files,
{
type: 'doc',
name: file.name,
collection_name: res.collection_name
}
];
filesInputElement.value = '';
}
} else {
toast.error(`Unsupported File Type '${file['type']}'.`);
inputFiles = null;
}
} else {
toast.error(`Unsupported File Type '${inputFiles[0]['type']}'.`);
inputFiles = null;
toast.error(`File not found.`);
}
}}
/>
@ -237,10 +273,42 @@
}}
>
{#if files.length > 0}
<div class="ml-2 mt-2 mb-1 flex space-x-2">
<div class="mx-2 mt-2 mb-1 flex flex-wrap gap-2">
{#each files as file, fileIdx}
<div class=" relative group">
<img src={file.url} alt="input" class=" h-16 w-16 rounded-xl object-cover" />
{#if file.type === 'image'}
<img src={file.url} alt="input" class=" h-16 w-16 rounded-xl object-cover" />
{:else if file.type === 'doc'}
<div
class="h-16 w-[15rem] flex items-center space-x-3 px-2.5 dark:bg-gray-600 rounded-xl border border-gray-200 dark:border-none"
>
<div class="p-2.5 bg-red-400 text-white rounded-lg">
<svg
xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 24 24"
fill="currentColor"
class="w-6 h-6"
>
<path
fill-rule="evenodd"
d="M5.625 1.5c-1.036 0-1.875.84-1.875 1.875v17.25c0 1.035.84 1.875 1.875 1.875h12.75c1.035 0 1.875-.84 1.875-1.875V12.75A3.75 3.75 0 0 0 16.5 9h-1.875a1.875 1.875 0 0 1-1.875-1.875V5.25A3.75 3.75 0 0 0 9 1.5H5.625ZM7.5 15a.75.75 0 0 1 .75-.75h7.5a.75.75 0 0 1 0 1.5h-7.5A.75.75 0 0 1 7.5 15Zm.75 2.25a.75.75 0 0 0 0 1.5H12a.75.75 0 0 0 0-1.5H8.25Z"
clip-rule="evenodd"
/>
<path
d="M12.971 1.816A5.23 5.23 0 0 1 14.25 5.25v1.875c0 .207.168.375.375.375H16.5a5.23 5.23 0 0 1 3.434 1.279 9.768 9.768 0 0 0-6.963-6.963Z"
/>
</svg>
</div>
<div class="flex flex-col justify-center -space-y-0.5">
<div class=" dark:text-gray-100 text-sm font-medium line-clamp-1">
{file.name}
</div>
<div class=" text-gray-500 text-sm">Document</div>
</div>
</div>
{/if}
<div class=" absolute -top-1 -right-1">
<button

View file

@ -53,11 +53,41 @@
class="prose chat-{message.role} w-full max-w-full dark:prose-invert prose-headings:my-0 prose-p:my-0 prose-p:-mb-4 prose-pre:my-0 prose-table:my-0 prose-blockquote:my-0 prose-img:my-0 prose-ul:-my-4 prose-ol:-my-4 prose-li:-my-3 prose-ul:-mb-6 prose-ol:-mb-6 prose-li:-mb-4 whitespace-pre-line"
>
{#if message.files}
<div class="my-3 w-full flex overflow-x-auto space-x-2">
<div class="my-2.5 w-full flex overflow-x-auto gap-2 flex-wrap">
{#each message.files as file}
<div>
{#if file.type === 'image'}
<img src={file.url} alt="input" class=" max-h-96 rounded-lg" draggable="false" />
{:else if file.type === 'doc'}
<div
class="h-16 w-[15rem] flex items-center space-x-3 px-2.5 dark:bg-gray-600 rounded-xl border border-gray-200 dark:border-none"
>
<div class="p-2.5 bg-red-400 text-white rounded-lg">
<svg
xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 24 24"
fill="currentColor"
class="w-6 h-6"
>
<path
fill-rule="evenodd"
d="M5.625 1.5c-1.036 0-1.875.84-1.875 1.875v17.25c0 1.035.84 1.875 1.875 1.875h12.75c1.035 0 1.875-.84 1.875-1.875V12.75A3.75 3.75 0 0 0 16.5 9h-1.875a1.875 1.875 0 0 1-1.875-1.875V5.25A3.75 3.75 0 0 0 9 1.5H5.625ZM7.5 15a.75.75 0 0 1 .75-.75h7.5a.75.75 0 0 1 0 1.5h-7.5A.75.75 0 0 1 7.5 15Zm.75 2.25a.75.75 0 0 0 0 1.5H12a.75.75 0 0 0 0-1.5H8.25Z"
clip-rule="evenodd"
/>
<path
d="M12.971 1.816A5.23 5.23 0 0 1 14.25 5.25v1.875c0 .207.168.375.375.375H16.5a5.23 5.23 0 0 1 3.434 1.279 9.768 9.768 0 0 0-6.963-6.963Z"
/>
</svg>
</div>
<div class="flex flex-col justify-center -space-y-0.5">
<div class=" dark:text-gray-100 text-sm font-medium line-clamp-1">
{file.name}
</div>
<div class=" text-gray-500 text-sm">Document</div>
</div>
</div>
{/if}
</div>
{/each}

View file

@ -5,6 +5,7 @@ export const WEBUI_BASE_URL = dev ? `http://${location.hostname}:8080` : ``;
export const WEBUI_API_BASE_URL = `${WEBUI_BASE_URL}/api/v1`;
export const OLLAMA_API_BASE_URL = `${WEBUI_BASE_URL}/ollama/api`;
export const OPENAI_API_BASE_URL = `${WEBUI_BASE_URL}/openai/api`;
export const RAG_API_BASE_URL = `${WEBUI_BASE_URL}/rag/api/v1`;
export const WEB_UI_VERSION = 'v1.0.0-alpha-static';

View file

@ -127,3 +127,37 @@ export const findWordIndices = (text) => {
return matches;
};
export const calculateSHA256 = async (file) => {
// Create a FileReader to read the file asynchronously
const reader = new FileReader();
// Define a promise to handle the file reading
const readFile = new Promise((resolve, reject) => {
reader.onload = () => resolve(reader.result);
reader.onerror = reject;
});
// Read the file as an ArrayBuffer
reader.readAsArrayBuffer(file);
try {
// Wait for the FileReader to finish reading the file
const buffer = await readFile;
// Convert the ArrayBuffer to a Uint8Array
const uint8Array = new Uint8Array(buffer);
// Calculate the SHA-256 hash using Web Crypto API
const hashBuffer = await crypto.subtle.digest('SHA-256', uint8Array);
// Convert the hash to a hexadecimal string
const hashArray = Array.from(new Uint8Array(hashBuffer));
const hashHex = hashArray.map((byte) => byte.toString(16).padStart(2, '0')).join('');
return `${hashHex}`;
} catch (error) {
console.error('Error calculating SHA-256 hash:', error);
throw error;
}
};

View file

@ -0,0 +1,20 @@
export const RAGTemplate = (context: string, query: string) => {
let template = `Use the following context as your learned knowledge, inside <context></context> XML tags.
<context>
[context]
</context>
When answer to user:
- If you don't know, just say that you don't know.
- If you don't know when you are not sure, ask for clarification.
Avoid mentioning that you obtained the information from the context.
And answer according to the language of the user's question.
Given the context information, answer the query.
Query: [query]`;
template = template.replace(/\[context\]/g, context);
template = template.replace(/\[query\]/g, query);
return template;
};

View file

@ -7,16 +7,18 @@
import { page } from '$app/stores';
import { models, modelfiles, user, settings, chats, chatId, config } from '$lib/stores';
import { copyToClipboard, splitStream } from '$lib/utils';
import { generateChatCompletion, generateTitle } from '$lib/apis/ollama';
import { copyToClipboard, splitStream } from '$lib/utils';
import { createNewChat, getChatList, updateChatById } from '$lib/apis/chats';
import { queryVectorDB } from '$lib/apis/rag';
import { generateOpenAIChatCompletion } from '$lib/apis/openai';
import MessageInput from '$lib/components/chat/MessageInput.svelte';
import Messages from '$lib/components/chat/Messages.svelte';
import ModelSelector from '$lib/components/chat/ModelSelector.svelte';
import Navbar from '$lib/components/layout/Navbar.svelte';
import { createNewChat, getChatList, updateChatById } from '$lib/apis/chats';
import { generateOpenAIChatCompletion } from '$lib/apis/openai';
import { RAGTemplate } from '$lib/utils/rag';
let stopResponseFlag = false;
let autoScroll = true;
@ -113,8 +115,108 @@
// Ollama functions
//////////////////////////
const submitPrompt = async (userPrompt) => {
console.log('submitPrompt', $chatId);
if (selectedModels.includes('')) {
toast.error('Model not selected');
} else if (messages.length != 0 && messages.at(-1).done != true) {
// Response not done
console.log('wait');
} else {
// Reset chat message textarea height
document.getElementById('chat-textarea').style.height = '';
// Create user message
let userMessageId = uuidv4();
let userMessage = {
id: userMessageId,
parentId: messages.length !== 0 ? messages.at(-1).id : null,
childrenIds: [],
role: 'user',
content: userPrompt,
files: files.length > 0 ? files : undefined
};
// Add message to history and Set currentId to messageId
history.messages[userMessageId] = userMessage;
history.currentId = userMessageId;
// Append messageId to childrenIds of parent message
if (messages.length !== 0) {
history.messages[messages.at(-1).id].childrenIds.push(userMessageId);
}
// Wait until history/message have been updated
await tick();
// Create new chat if only one message in messages
if (messages.length == 1) {
if ($settings.saveChatHistory ?? true) {
chat = await createNewChat(localStorage.token, {
id: $chatId,
title: 'New Chat',
models: selectedModels,
system: $settings.system ?? undefined,
options: {
...($settings.options ?? {})
},
messages: messages,
history: history,
timestamp: Date.now()
});
await chats.set(await getChatList(localStorage.token));
await chatId.set(chat.id);
} else {
await chatId.set('local');
}
await tick();
}
// Reset chat input textarea
prompt = '';
files = [];
// Send prompt
await sendPrompt(userPrompt, userMessageId);
}
};
const sendPrompt = async (prompt, parentId) => {
const _chatId = JSON.parse(JSON.stringify($chatId));
const docs = messages
.filter((message) => message?.files ?? null)
.map((message) => message.files.filter((item) => item.type === 'doc'))
.flat(1);
console.log(docs);
if (docs.length > 0) {
const query = history.messages[parentId].content;
let relevantContexts = await Promise.all(
docs.map(async (doc) => {
return await queryVectorDB(localStorage.token, doc.collection_name, query, 4).catch(
(error) => {
console.log(error);
return null;
}
);
})
);
relevantContexts = relevantContexts.filter((context) => context);
const contextString = relevantContexts.reduce((a, context, i, arr) => {
return `${a}${context.documents.join(' ')}\n`;
}, '');
console.log(contextString);
history.messages[parentId].raContent = RAGTemplate(contextString, query);
history.messages[parentId].contexts = relevantContexts;
await tick();
}
await Promise.all(
selectedModels.map(async (model) => {
console.log(model);
@ -177,7 +279,7 @@
.filter((message) => message)
.map((message) => ({
role: message.role,
content: message.content,
content: message?.raContent ?? message.content,
...(message.files && {
images: message.files
.filter((file) => file.type === 'image')
@ -366,7 +468,7 @@
content: [
{
type: 'text',
text: message.content
text: message?.raContent ?? message.content
},
...message.files
.filter((file) => file.type === 'image')
@ -378,7 +480,7 @@
}))
]
}
: { content: message.content })
: { content: message?.raContent ?? message.content })
})),
seed: $settings?.options?.seed ?? undefined,
stop: $settings?.options?.stop ?? undefined,
@ -494,73 +596,6 @@
}
};
const submitPrompt = async (userPrompt) => {
console.log('submitPrompt', $chatId);
if (selectedModels.includes('')) {
toast.error('Model not selected');
} else if (messages.length != 0 && messages.at(-1).done != true) {
// Response not done
console.log('wait');
} else {
// Reset chat message textarea height
document.getElementById('chat-textarea').style.height = '';
// Create user message
let userMessageId = uuidv4();
let userMessage = {
id: userMessageId,
parentId: messages.length !== 0 ? messages.at(-1).id : null,
childrenIds: [],
role: 'user',
content: userPrompt,
files: files.length > 0 ? files : undefined
};
// Add message to history and Set currentId to messageId
history.messages[userMessageId] = userMessage;
history.currentId = userMessageId;
// Append messageId to childrenIds of parent message
if (messages.length !== 0) {
history.messages[messages.at(-1).id].childrenIds.push(userMessageId);
}
// Wait until history/message have been updated
await tick();
// Create new chat if only one message in messages
if (messages.length == 1) {
if ($settings.saveChatHistory ?? true) {
chat = await createNewChat(localStorage.token, {
id: $chatId,
title: 'New Chat',
models: selectedModels,
system: $settings.system ?? undefined,
options: {
...($settings.options ?? {})
},
messages: messages,
history: history,
timestamp: Date.now()
});
await chats.set(await getChatList(localStorage.token));
await chatId.set(chat.id);
} else {
await chatId.set('local');
}
await tick();
}
// Reset chat input textarea
prompt = '';
files = [];
// Send prompt
await sendPrompt(userPrompt, userMessageId);
}
};
const stopResponse = () => {
stopResponseFlag = true;
console.log('stopResponse');