78 lines
No EOL
2.8 KiB
Python
78 lines
No EOL
2.8 KiB
Python
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
if __name__ == "__main__":
|
|
# read in the csv
|
|
df = pd.read_csv("./results/compress/compression_results.csv")
|
|
|
|
for model_type in df["model_type"].unique():
|
|
model_df = df[df["model_type"] == model_type]
|
|
|
|
# execution time
|
|
plt.figure()
|
|
grouped = model_df.groupby("context_length")["compression_time"].mean() / 1e9
|
|
labels = grouped.index.astype(str) # "128", "256"
|
|
x = np.arange(len(labels)) # [0, 1]
|
|
|
|
plt.bar(x, grouped.values, width=0.6)
|
|
plt.title(f"{model_type} mean compression time")
|
|
plt.xticks(x, labels)
|
|
plt.xlabel("Context length")
|
|
plt.ylabel("Mean compression time [s]")
|
|
plt.tight_layout()
|
|
plt.savefig(f"./graphs/{model_type}_{}_compression_time.png")
|
|
|
|
plt.figure()
|
|
grouped = model_df.groupby("context_length")["decompression_time"].mean() / 1e9
|
|
labels = grouped.index.astype(str) # "128", "256"
|
|
x = np.arange(len(labels)) # [0, 1]
|
|
|
|
plt.bar(x, grouped.values, width=0.6)
|
|
plt.title(f"{model_type} mean decompression time")
|
|
plt.xticks(x, labels)
|
|
plt.xlabel("Context length")
|
|
plt.ylabel("Mean decompression time [s]")
|
|
plt.tight_layout()
|
|
plt.savefig(f"./graphs/{model_type}_{}_decompression_time.png")
|
|
|
|
# accuracy
|
|
plt.figure()
|
|
bar_height = 0.25
|
|
files = model_df["input_file_name"].unique()
|
|
y = np.arange(len(files))
|
|
c256 = model_df[model_df["context_length"] == 256]
|
|
c128 = model_df[model_df["context_length"] == 128]
|
|
|
|
plt.barh(
|
|
y - bar_height / 2,
|
|
c256["match_percentage"] * 100,
|
|
height=bar_height,
|
|
label="256"
|
|
)
|
|
|
|
plt.barh(
|
|
y + bar_height / 2,
|
|
c128["match_percentage"] * 100,
|
|
height=bar_height,
|
|
label="128"
|
|
)
|
|
plt.yticks(y, files)
|
|
plt.title(f"{model_type} time for different context lengths")
|
|
plt.xlabel("accuracy")
|
|
plt.ylabel("Filename")
|
|
plt.legend()
|
|
plt.savefig(f"./graphs/{model_type}_{}_accuracy.png")
|
|
|
|
# compression ratio
|
|
plt.figure()
|
|
c256 = model_df[model_df["context_length"] == 256]
|
|
c128 = model_df[model_df["context_length"] == 128]
|
|
|
|
plt.plot(c256["original_file_size"] / 1_000_000, c256["compressed_file_size"] / 1_000_000, label="256")
|
|
plt.plot(c128["original_file_size"] / 1_000_000, c128["compressed_file_size"] / 1_000_000, label="128")
|
|
plt.title(f"{model_type} compressed file evolution")
|
|
plt.xlabel("Original file size [MB]")
|
|
plt.ylabel("Compressed file size [MB]")
|
|
plt.legend()
|
|
plt.savefig(f"./graphs/{model_type}_{}_compression_ratio.png") |