import pandas as pd import matplotlib.pyplot as plt import numpy as np if __name__ == "__main__": # read in the csv df = pd.read_csv("./results/compress/compression_results.csv") for model_type in df["model_type"].unique(): model_df = df[df["model_type"] == model_type] # execution time plt.figure() grouped = model_df.groupby("context_length")["compression_time"].mean() / 1e9 labels = grouped.index.astype(str) # "128", "256" x = np.arange(len(labels)) # [0, 1] plt.bar(x, grouped.values, width=0.6) plt.title(f"{model_type} mean compression time") plt.xticks(x, labels) plt.xlabel("Context length") plt.ylabel("Mean compression time [s]") plt.tight_layout() plt.savefig(f"./graphs/{model_type}_{}_compression_time.png") plt.figure() grouped = model_df.groupby("context_length")["decompression_time"].mean() / 1e9 labels = grouped.index.astype(str) # "128", "256" x = np.arange(len(labels)) # [0, 1] plt.bar(x, grouped.values, width=0.6) plt.title(f"{model_type} mean decompression time") plt.xticks(x, labels) plt.xlabel("Context length") plt.ylabel("Mean decompression time [s]") plt.tight_layout() plt.savefig(f"./graphs/{model_type}_{}_decompression_time.png") # accuracy plt.figure() bar_height = 0.25 files = model_df["input_file_name"].unique() y = np.arange(len(files)) c256 = model_df[model_df["context_length"] == 256] c128 = model_df[model_df["context_length"] == 128] plt.barh( y - bar_height / 2, c256["match_percentage"] * 100, height=bar_height, label="256" ) plt.barh( y + bar_height / 2, c128["match_percentage"] * 100, height=bar_height, label="128" ) plt.yticks(y, files) plt.title(f"{model_type} time for different context lengths") plt.xlabel("accuracy") plt.ylabel("Filename") plt.legend() plt.savefig(f"./graphs/{model_type}_{}_accuracy.png") # compression ratio plt.figure() c256 = model_df[model_df["context_length"] == 256] c128 = model_df[model_df["context_length"] == 128] plt.plot(c256["original_file_size"] / 1_000_000, c256["compressed_file_size"] / 1_000_000, label="256") plt.plot(c128["original_file_size"] / 1_000_000, c128["compressed_file_size"] / 1_000_000, label="128") plt.title(f"{model_type} compressed file evolution") plt.xlabel("Original file size [MB]") plt.ylabel("Compressed file size [MB]") plt.legend() plt.savefig(f"./graphs/{model_type}_{}_compression_ratio.png")