# Conflicts: # config/measure.py # results/compression_results_auto_small.csv
4.6 KiB
4.6 KiB
| 1 | epoch | train_loss | validation_loss |
|---|---|---|---|
| 2 | 0 | 0.01085386620735053 | 0.006341735845545435 |
| 3 | 1 | 0.005400850162054922 | 0.005839746445417404 |
| 4 | 2 | 0.00485425135649789 | 0.005176252243642247 |
| 5 | 3 | 0.004343160376179249 | 0.004764631774120089 |
| 6 | 4 | 0.003973618765875379 | 0.004521288118104785 |
| 7 | 5 | 0.0037353913164106414 | 0.004481842616601414 |
| 8 | 6 | 0.0034915975268732784 | 0.004085033499984113 |
| 9 | 7 | 0.0032940426047108826 | 0.0040647861355816136 |
| 10 | 8 | 0.0031321082655461152 | 0.0037558919103204747 |
| 11 | 9 | 0.003010743991601424 | 0.0037656369576415487 |
| 12 | 10 | 0.0029294860578208503 | 0.003578710466452682 |
| 13 | 11 | 0.0028546467275023914 | 0.0035189846665633997 |
| 14 | 12 | 0.0027932538977585197 | 0.0035751495403699746 |
| 15 | 13 | 0.0027470570230722327 | 0.003509308735463228 |
| 16 | 14 | 0.0027130976300849927 | 0.0034442961493236874 |
| 17 | 15 | 0.002682083621521715 | 0.003392344111406052 |
| 18 | 16 | 0.0026481835902293946 | 0.003387695018251832 |
| 19 | 17 | 0.0026277972960839667 | 0.0033847096146845065 |
| 20 | 18 | 0.0025976814844106224 | 0.0033270206172659085 |
| 21 | 19 | 0.0025774615515325983 | 0.0033331061731170833 |
| 22 | 20 | 0.002554088587199135 | 0.0031912977204707855 |
| 23 | 21 | 0.002529182493703719 | 0.003161894014809025 |
| 24 | 22 | 0.002509173103283311 | 0.003274783360565664 |
| 25 | 23 | 0.002493507948587249 | 0.00315583101544842 |
| 26 | 24 | 0.0024818113836908256 | 0.0031739519320726963 |
| 27 | 25 | 0.002465371198361378 | 0.0031647984757806166 |
| 28 | 26 | 0.0024576109824783806 | 0.0031128548478480175 |
| 29 | 27 | 0.0024322328375907367 | 0.0031788155468507806 |
| 30 | 28 | 0.0024184938447405786 | 0.0030075300200522403 |
| 31 | 29 | 0.0024033928370075547 | 0.003104134032659176 |
| 32 | 30 | 0.0023887938180895047 | 0.0030373098380252262 |
| 33 | 31 | 0.002377954244651284 | 0.0030804877380932903 |
| 34 | 32 | 0.0023671470654739925 | 0.003197283330480106 |
| 35 | 33 | 0.0023592046057319695 | 0.003121301071995599 |
| 36 | 34 | 0.002344898579147223 | 0.0031348077974900717 |
| 37 | 35 | 0.002339629502026091 | 0.002927345941945171 |
| 38 | 36 | 0.0023279483634690936 | 0.002894312355717118 |
| 39 | 37 | 0.0023208571785849315 | 0.002933271177368992 |
| 40 | 38 | 0.0023138481378253495 | 0.0028879965726598985 |
| 41 | 39 | 0.002306657297520043 | 0.002920459291741309 |
| 42 | 40 | 0.0022981759584876325 | 0.00299808147455786 |
| 43 | 41 | 0.002293835998485465 | 0.002979034007498497 |
| 44 | 42 | 0.0022814683779045154 | 0.003016964837247577 |
| 45 | 43 | 0.00228243507080922 | 0.0029129722491546555 |
| 46 | 44 | 0.0022703518956442327 | 0.00290401142218527 |
| 47 | 45 | 0.002264509716589931 | 0.002961287192132978 |
| 48 | 46 | 0.002261438686702453 | 0.0029293647910404296 |
| 49 | 47 | 0.002253969647064862 | 0.0029001163736426536 |
| 50 | 48 | 0.002254254681703017 | 0.002908032886925658 |
| 51 | 49 | 0.0022453528849246123 | 0.002944148815670655 |
| 52 | 50 | 0.0022425899143446856 | 0.00301588520350802 |
| 53 | 51 | 0.0022357832984817743 | 0.0030597917140170023 |
| 54 | 52 | 0.002237347252139686 | 0.0028887362407790567 |
| 55 | 53 | 0.0022286995899200644 | 0.002863695007350779 |
| 56 | 54 | 0.0022294600902968862 | 0.002846075340444293 |
| 57 | 55 | 0.002223826257742407 | 0.0028796627291101423 |
| 58 | 56 | 0.0022214871448749804 | 0.0029382862195102425 |
| 59 | 57 | 0.002218214040002535 | 0.0028495208214513444 |
| 60 | 58 | 0.002215856266065259 | 0.0030202539161359536 |
| 61 | 59 | 0.002211903883470915 | 0.002845815159131609 |
| 62 | 60 | 0.0022101723422568676 | 0.00287446059866005 |
| 63 | 61 | 0.0022062657899292503 | 0.0028590587970182186 |
| 64 | 62 | 0.002203832045341286 | 0.002986196565925222 |
| 65 | 63 | 0.0022021674725848056 | 0.0028632651564828655 |
| 66 | 64 | 0.0021999818296855214 | 0.0028097550592648276 |
| 67 | 65 | 0.0021991361646880683 | 0.003032991367584194 |
| 68 | 66 | 0.0021926820697759967 | 0.0029617570836509345 |
| 69 | 67 | 0.0021924606041614928 | 0.0028841386293238813 |
| 70 | 68 | 0.0021863565102057674 | 0.0027928410035749996 |
| 71 | 69 | 0.0021813936681379085 | 0.0027880940636093835 |
| 72 | 70 | 0.002179648388806323 | 0.0028063443236991423 |
| 73 | 71 | 0.0021775863633561755 | 0.0029397492814197683 |
| 74 | 72 | 0.002170139022948724 | 0.002737486573959921 |
| 75 | 73 | 0.002172832279302765 | 0.0028291837633978435 |
| 76 | 74 | 0.0021689082086217646 | 0.0027951504574832684 |
| 77 | 75 | 0.0021658048443009793 | 0.0028180658673327276 |
| 78 | 76 | 0.00216622280948087 | 0.0028333129414591855 |
| 79 | 77 | 0.002160428078080699 | 0.0028204590643805855 |
| 80 | 78 | 0.0021582582049526977 | 0.0027962563271484984 |
| 81 | 79 | 0.00215700428526894 | 0.002741300136576058 |
| 82 | 80 | 0.002151882248333067 | 0.002784353600573221 |
| 83 | 81 | 0.002152497883134437 | 0.0028792617943863034 |
| 84 | 82 | 0.0021529012368377717 | 0.0027290458869160586 |
| 85 | 83 | 0.0021525764450579287 | 0.0028022712823501184 |
| 86 | 84 | 0.0021505030475218122 | 0.002728834834646519 |
| 87 | 85 | 0.002143648629432904 | 0.0028376821016196075 |
| 88 | 86 | 0.0021454132775134494 | 0.002691453858989625 |
| 89 | 87 | 0.0021452548128708606 | 0.0027243838986765793 |
| 90 | 88 | 0.002141443245326642 | 0.0028064492961946334 |
| 91 | 89 | 0.0021420888263384945 | 0.0028304505225925044 |
| 92 | 90 | 0.002138309630508891 | 0.0029567666904545807 |
| 93 | 91 | 0.00213749550270173 | 0.0027819796561313268 |
| 94 | 92 | 0.002132035415243958 | 0.002714667086070048 |
| 95 | 93 | 0.0021305107222649856 | 0.0028131204459972622 |
| 96 | 94 | 0.00213028993139777 | 0.0030191744745261114 |
| 97 | 95 | 0.002128118297526861 | 0.002814624915681495 |
| 98 | 96 | 0.002128091526574239 | 0.0027268895299977247 |
| 99 | 97 | 0.0021282815642238054 | 0.0031471029206584316 |
| 100 | 98 | 0.0021278927277285768 | 0.0027661766021562216 |
| 101 | 99 | 0.0021256208950614615 | 0.0034058631785242387 |