This repository has been archived on 2025-12-23. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
2025ML-project-neural_compr.../CNN-model/dataset_loaders/LoremIpsumDataset.py
2025-11-27 19:26:59 +01:00

35 lines
1.1 KiB
Python

from typing import Callable
import torch
from os.path import curdir, join
from lorem.text import TextLorem
from .Dataset import Dataset
class LoremIpsumDataset(Dataset):
def __init__(self, root: str = "data", transform: Callable = None):
super().__init__(root, transform)
# Generate text and convert to bytes
_lorem = TextLorem()
_text = ' '.join(_lorem._word() for _ in range(512))
path = join(curdir, "data")
self._root = path
# Convert text to bytes (UTF-8 encoded)
self.dataset = torch.tensor([ord(c) for c in list(_text)], dtype=torch.long)
sequence_count = self.dataset.shape[0] // 128 # how many vectors of 128 elements can we make
self.dataset = self.dataset[:sequence_count * 128]
self.dataset = self.dataset.view(-1, 128)
print(self.dataset.shape)
def __len__(self):
# Number of possible sequences of length sequence_length
return self.dataset.size(0)
def __getitem__(self, idx):
if self.transform is not None:
return self.transform(self.dataset[idx])
return self.dataset[idx]