feat: updates to datasets/-loaders
This commit is contained in:
parent
ed44d5b283
commit
d2e6d17f55
11 changed files with 105 additions and 34 deletions
26
CNN-model/dataset_loaders/Dataset.py
Normal file
26
CNN-model/dataset_loaders/Dataset.py
Normal file
|
|
@ -0,0 +1,26 @@
|
|||
from abc import abstractmethod, ABC
|
||||
from os.path import join, curdir
|
||||
from typing import Callable
|
||||
|
||||
from torch.utils.data import Dataset as TorchDataset
|
||||
|
||||
"""
|
||||
Author: Tibo De Peuter
|
||||
"""
|
||||
class Dataset(TorchDataset, ABC):
|
||||
"""Abstract base class for datasets."""
|
||||
@abstractmethod
|
||||
def __init__(self, root: str, transform: Callable = None):
|
||||
"""
|
||||
:param root: Relative path to the dataset root directory
|
||||
"""
|
||||
self._root: str = join(curdir, 'data', root)
|
||||
self.transform = transform
|
||||
self.dataset = None
|
||||
|
||||
@property
|
||||
def root(self):
|
||||
return self._root
|
||||
|
||||
def __len__(self):
|
||||
return len(self.dataset)
|
||||
25
CNN-model/dataset_loaders/EnWik9.py
Normal file
25
CNN-model/dataset_loaders/EnWik9.py
Normal file
|
|
@ -0,0 +1,25 @@
|
|||
from datasets import load_dataset
|
||||
from os.path import curdir, join
|
||||
from .Dataset import Dataset
|
||||
from torch.utils.data import TensorDataset
|
||||
from typing import Callable
|
||||
|
||||
|
||||
class EnWik9DataSet(Dataset):
|
||||
def __init__(self, root: str = "data", transform: Callable = None):
|
||||
super().__init__(root, transform)
|
||||
|
||||
path = join(curdir, root)
|
||||
self._root = path
|
||||
|
||||
data = load_dataset("haukur/enwik9", cache_dir=path, split="train")
|
||||
text = data["text"]
|
||||
self.dataset = TensorDataset(text)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.dataset)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
if self.transform is not None:
|
||||
return self.transform(self.dataset[idx])
|
||||
return self.dataset[idx]
|
||||
35
CNN-model/dataset_loaders/LoremIpsumDataset.py
Normal file
35
CNN-model/dataset_loaders/LoremIpsumDataset.py
Normal file
|
|
@ -0,0 +1,35 @@
|
|||
from typing import Callable
|
||||
|
||||
import torch
|
||||
from os.path import curdir, join
|
||||
from lorem.text import TextLorem
|
||||
from .Dataset import Dataset
|
||||
|
||||
|
||||
class LoremIpsumDataset(Dataset):
|
||||
def __init__(self, root: str = "data", transform: Callable = None):
|
||||
super().__init__(root, transform)
|
||||
|
||||
# Generate text and convert to bytes
|
||||
_lorem = TextLorem()
|
||||
_text = ' '.join(_lorem._word() for _ in range(512))
|
||||
|
||||
path = join(curdir, "data")
|
||||
self._root = path
|
||||
# Convert text to bytes (UTF-8 encoded)
|
||||
self.dataset = torch.tensor([ord(c) for c in list(_text)], dtype=torch.long)
|
||||
|
||||
sequence_count = self.dataset.shape[0] // 128 # how many vectors of 128 elements can we make
|
||||
self.dataset = self.dataset[:sequence_count * 128]
|
||||
self.dataset = self.dataset.view(-1, 128)
|
||||
|
||||
print(self.dataset.shape)
|
||||
|
||||
def __len__(self):
|
||||
# Number of possible sequences of length sequence_length
|
||||
return self.dataset.size(0)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
if self.transform is not None:
|
||||
return self.transform(self.dataset[idx])
|
||||
return self.dataset[idx]
|
||||
3
CNN-model/dataset_loaders/__init__.py
Normal file
3
CNN-model/dataset_loaders/__init__.py
Normal file
|
|
@ -0,0 +1,3 @@
|
|||
from .EnWik9 import EnWik9DataSet
|
||||
from .LoremIpsumDataset import LoremIpsumDataset
|
||||
from .Dataset import Dataset
|
||||
|
|
@ -1,11 +0,0 @@
|
|||
from datasets import load_dataset
|
||||
from os.path import curdir, join
|
||||
|
||||
class EnWik9DataSet:
|
||||
def __init__(self):
|
||||
path = join(curdir, "data")
|
||||
self.data = load_dataset("haukur/enwik9", cache_dir=path, split="train")
|
||||
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
|
@ -1,5 +0,0 @@
|
|||
import lorem
|
||||
|
||||
class LoremIpsumDataset:
|
||||
def __init__(self):
|
||||
self.data = lorem.text(paragraphs=100)
|
||||
|
|
@ -1,2 +0,0 @@
|
|||
from EnWik9 import EnWik9DataSet
|
||||
from LoremIpsumDataset import LoremIpsumDataset
|
||||
|
|
@ -2,10 +2,10 @@ from argparse import ArgumentParser
|
|||
from math import ceil
|
||||
|
||||
import torch
|
||||
from torch.utils.data import DataLoader, TensorDataset
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from datasets import EnWik9DataSet, LoremIpsumDataset
|
||||
from trainers import OptunaTrainer, Trainer
|
||||
from dataset_loaders import EnWik9DataSet, LoremIpsumDataset, Dataset
|
||||
from trainers import OptunaTrainer, Trainer, FullTrainer
|
||||
|
||||
BATCH_SIZE = 64
|
||||
DEVICE = torch.accelerator.current_accelerator().type if torch.accelerator.is_available() else "cpu"
|
||||
|
|
@ -21,9 +21,9 @@ if __name__ == "__main__":
|
|||
args = parser.parse_args()
|
||||
|
||||
if args.method == "train":
|
||||
dataset = EnWik9DataSet()
|
||||
dataset: Dataset = EnWik9DataSet(transform=lambda x: x.to(DEVICE))
|
||||
elif args.method == "optuna":
|
||||
dataset = LoremIpsumDataset()
|
||||
dataset: Dataset = LoremIpsumDataset(transform=lambda x: x.to(DEVICE))
|
||||
else:
|
||||
raise ValueError(f"Unknown method: {args.method}")
|
||||
|
||||
|
|
@ -31,9 +31,8 @@ if __name__ == "__main__":
|
|||
training_size = ceil(0.8 * dataset_length)
|
||||
|
||||
print(f"training set size = {training_size}, validation set size {dataset_length - training_size}")
|
||||
data = dataset.data["text"]
|
||||
|
||||
train_set, validate_set = torch.utils.data.random_split(TensorDataset(data),
|
||||
train_set, validate_set = torch.utils.data.random_split(dataset,
|
||||
[training_size, dataset_length - training_size])
|
||||
training_loader = DataLoader(train_set, batch_size=BATCH_SIZE, shuffle=True)
|
||||
validation_loader = DataLoader(validate_set, batch_size=BATCH_SIZE, shuffle=False)
|
||||
|
|
@ -43,7 +42,7 @@ if __name__ == "__main__":
|
|||
if args.model_path is not None:
|
||||
model = torch.load(args.model_path)
|
||||
|
||||
trainer: Trainer = OptunaTrainer() if args.method == "optuna" else None
|
||||
trainer: Trainer = OptunaTrainer() if args.method == "optuna" else FullTrainer()
|
||||
|
||||
trainer.execute(
|
||||
model=model,
|
||||
|
|
|
|||
|
|
@ -4,9 +4,9 @@ import torch
|
|||
from torch import nn as nn
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from trainer import Trainer
|
||||
from train import train
|
||||
from ..utils import print_losses
|
||||
from .trainer import Trainer
|
||||
from .train import train
|
||||
from utils import print_losses
|
||||
|
||||
class FullTrainer(Trainer):
|
||||
def execute(
|
||||
|
|
|
|||
|
|
@ -6,9 +6,9 @@ import torch
|
|||
from torch import nn as nn
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from trainer import Trainer
|
||||
from ..model.cnn import CNNPredictor
|
||||
from train import train
|
||||
from .trainer import Trainer
|
||||
from model.cnn import CNNPredictor
|
||||
from .train import train
|
||||
|
||||
|
||||
def create_model(trial: tr.Trial, vocab_size: int = 256):
|
||||
|
|
|
|||
|
|
@ -1,2 +1,3 @@
|
|||
from OptunaTrainer import OptunaTrainer
|
||||
from trainer import Trainer
|
||||
from .OptunaTrainer import OptunaTrainer
|
||||
from .FullTrainer import FullTrainer
|
||||
from .trainer import Trainer
|
||||
Reference in a new issue