feat: initial for IDF
This commit is contained in:
commit
ef4684ef39
27 changed files with 2830 additions and 0 deletions
148
integer_discrete_flows/optimization/loss.py
Normal file
148
integer_discrete_flows/optimization/loss.py
Normal file
|
|
@ -0,0 +1,148 @@
|
|||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from utils.distributions import log_discretized_logistic, \
|
||||
log_mixture_discretized_logistic, log_normal, log_discretized_normal, \
|
||||
log_logistic, log_mixture_normal
|
||||
from models.backround import _round_straightthrough
|
||||
|
||||
|
||||
def compute_log_ps(pxs, xs, args):
|
||||
# Add likelihoods of intermediate representations.
|
||||
inverse_bin_width = 2.**args.n_bits
|
||||
|
||||
log_pxs = []
|
||||
for px, x in zip(pxs, xs):
|
||||
|
||||
if args.variable_type == 'discrete':
|
||||
if args.distribution_type == 'logistic':
|
||||
log_px = log_discretized_logistic(
|
||||
x, *px, inverse_bin_width=inverse_bin_width)
|
||||
elif args.distribution_type == 'normal':
|
||||
log_px = log_discretized_normal(
|
||||
x, *px, inverse_bin_width=inverse_bin_width)
|
||||
elif args.variable_type == 'continuous':
|
||||
if args.distribution_type == 'logistic':
|
||||
log_px = log_logistic(x, *px)
|
||||
elif args.distribution_type == 'normal':
|
||||
log_px = log_normal(x, *px)
|
||||
elif args.distribution_type == 'steplogistic':
|
||||
x = _round_straightthrough(x * inverse_bin_width) / inverse_bin_width
|
||||
log_px = log_discretized_logistic(
|
||||
x, *px, inverse_bin_width=inverse_bin_width)
|
||||
|
||||
log_pxs.append(
|
||||
torch.sum(log_px, dim=[1, 2, 3]))
|
||||
|
||||
return log_pxs
|
||||
|
||||
|
||||
def compute_log_pz(pz, z, args):
|
||||
inverse_bin_width = 2.**args.n_bits
|
||||
|
||||
if args.variable_type == 'discrete':
|
||||
if args.distribution_type == 'logistic':
|
||||
if args.n_mixtures == 1:
|
||||
log_pz = log_discretized_logistic(
|
||||
z, pz[0], pz[1], inverse_bin_width=inverse_bin_width)
|
||||
else:
|
||||
log_pz = log_mixture_discretized_logistic(
|
||||
z, pz[0], pz[1], pz[2],
|
||||
inverse_bin_width=inverse_bin_width)
|
||||
elif args.distribution_type == 'normal':
|
||||
log_pz = log_discretized_normal(
|
||||
z, *pz, inverse_bin_width=inverse_bin_width)
|
||||
|
||||
elif args.variable_type == 'continuous':
|
||||
if args.distribution_type == 'logistic':
|
||||
log_pz = log_logistic(z, *pz)
|
||||
elif args.distribution_type == 'normal':
|
||||
if args.n_mixtures == 1:
|
||||
log_pz = log_normal(z, *pz)
|
||||
else:
|
||||
log_pz = log_mixture_normal(z, *pz)
|
||||
elif args.distribution_type == 'steplogistic':
|
||||
z = _round_straightthrough(z * 256.) / 256.
|
||||
log_pz = log_discretized_logistic(z, *pz)
|
||||
|
||||
log_pz = torch.sum(
|
||||
log_pz,
|
||||
dim=[1, 2, 3])
|
||||
|
||||
return log_pz
|
||||
|
||||
|
||||
def compute_loss_function(pz, z, pys, ys, ldj, args):
|
||||
"""
|
||||
Computes the cross entropy loss function while summing over batch dimension, not averaged!
|
||||
:param x_logit: shape: (batch_size, num_classes * num_channels, pixel_width, pixel_height), real valued logits
|
||||
:param x: shape (batchsize, num_channels, pixel_width, pixel_height), pixel values rescaled between [0, 1].
|
||||
:param z_mu: mean of z_0
|
||||
:param z_var: variance of z_0
|
||||
:param z_0: first stochastic latent variable
|
||||
:param z_k: last stochastic latent variable
|
||||
:param ldj: log det jacobian
|
||||
:param args: global parameter settings
|
||||
:param beta: beta for kl loss
|
||||
:return: loss, ce, kl
|
||||
"""
|
||||
batch_size = z.size(0)
|
||||
|
||||
# Get array loss, sum over batch
|
||||
loss_array, bpd_array, bpd_per_prior_array = \
|
||||
compute_loss_array(pz, z, pys, ys, ldj, args)
|
||||
|
||||
loss = torch.mean(loss_array)
|
||||
bpd = torch.mean(bpd_array).item()
|
||||
bpd_per_prior = [torch.mean(x) for x in bpd_per_prior_array]
|
||||
|
||||
return loss, bpd, bpd_per_prior
|
||||
|
||||
|
||||
def convert_bpd(log_p, input_size):
|
||||
return -log_p / (np.prod(input_size) * np.log(2.))
|
||||
|
||||
|
||||
def compute_loss_array(pz, z, pys, ys, ldj, args):
|
||||
"""
|
||||
Computes the cross entropy loss function while summing over batch dimension, not averaged!
|
||||
:param x_logit: shape: (batch_size, num_classes * num_channels, pixel_width, pixel_height), real valued logits
|
||||
:param x: shape (batchsize, num_channels, pixel_width, pixel_height), pixel values rescaled between [0, 1].
|
||||
:param z_mu: mean of z_0
|
||||
:param z_var: variance of z_0
|
||||
:param z_0: first stochastic latent variable
|
||||
:param z_k: last stochastic latent variable
|
||||
:param ldj: log det jacobian
|
||||
:param args: global parameter settings
|
||||
:param beta: beta for kl loss
|
||||
:return: loss, ce, kl
|
||||
"""
|
||||
bpd_per_prior = []
|
||||
|
||||
# Likelihood of final representation.
|
||||
log_pz = compute_log_pz(pz, z, args)
|
||||
|
||||
bpd_per_prior.append(convert_bpd(log_pz.detach(), args.input_size))
|
||||
|
||||
log_p = log_pz
|
||||
|
||||
# Add likelihoods of intermediate representations.
|
||||
if ys:
|
||||
log_pys = compute_log_ps(pys, ys, args)
|
||||
|
||||
for log_py in log_pys:
|
||||
log_p += log_py
|
||||
|
||||
bpd_per_prior.append(convert_bpd(log_py.detach(), args.input_size))
|
||||
|
||||
log_p += ldj
|
||||
|
||||
loss = -log_p
|
||||
bpd = convert_bpd(log_p.detach(), args.input_size)
|
||||
|
||||
return loss, bpd, bpd_per_prior
|
||||
|
||||
|
||||
def calculate_loss(pz, z, pys, ys, ldj, loss_aux, args):
|
||||
return compute_loss_function(pz, z, pys, ys, ldj, loss_aux, args)
|
||||
Reference in a new issue