This repository has been archived on 2025-12-23. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
2025ML-project-neural_compr.../integer_discrete_flows/optimization/loss.py
2025-11-07 12:54:36 +01:00

148 lines
5.1 KiB
Python

from __future__ import print_function
import numpy as np
import torch
from utils.distributions import log_discretized_logistic, \
log_mixture_discretized_logistic, log_normal, log_discretized_normal, \
log_logistic, log_mixture_normal
from models.backround import _round_straightthrough
def compute_log_ps(pxs, xs, args):
# Add likelihoods of intermediate representations.
inverse_bin_width = 2.**args.n_bits
log_pxs = []
for px, x in zip(pxs, xs):
if args.variable_type == 'discrete':
if args.distribution_type == 'logistic':
log_px = log_discretized_logistic(
x, *px, inverse_bin_width=inverse_bin_width)
elif args.distribution_type == 'normal':
log_px = log_discretized_normal(
x, *px, inverse_bin_width=inverse_bin_width)
elif args.variable_type == 'continuous':
if args.distribution_type == 'logistic':
log_px = log_logistic(x, *px)
elif args.distribution_type == 'normal':
log_px = log_normal(x, *px)
elif args.distribution_type == 'steplogistic':
x = _round_straightthrough(x * inverse_bin_width) / inverse_bin_width
log_px = log_discretized_logistic(
x, *px, inverse_bin_width=inverse_bin_width)
log_pxs.append(
torch.sum(log_px, dim=[1, 2, 3]))
return log_pxs
def compute_log_pz(pz, z, args):
inverse_bin_width = 2.**args.n_bits
if args.variable_type == 'discrete':
if args.distribution_type == 'logistic':
if args.n_mixtures == 1:
log_pz = log_discretized_logistic(
z, pz[0], pz[1], inverse_bin_width=inverse_bin_width)
else:
log_pz = log_mixture_discretized_logistic(
z, pz[0], pz[1], pz[2],
inverse_bin_width=inverse_bin_width)
elif args.distribution_type == 'normal':
log_pz = log_discretized_normal(
z, *pz, inverse_bin_width=inverse_bin_width)
elif args.variable_type == 'continuous':
if args.distribution_type == 'logistic':
log_pz = log_logistic(z, *pz)
elif args.distribution_type == 'normal':
if args.n_mixtures == 1:
log_pz = log_normal(z, *pz)
else:
log_pz = log_mixture_normal(z, *pz)
elif args.distribution_type == 'steplogistic':
z = _round_straightthrough(z * 256.) / 256.
log_pz = log_discretized_logistic(z, *pz)
log_pz = torch.sum(
log_pz,
dim=[1, 2, 3])
return log_pz
def compute_loss_function(pz, z, pys, ys, ldj, args):
"""
Computes the cross entropy loss function while summing over batch dimension, not averaged!
:param x_logit: shape: (batch_size, num_classes * num_channels, pixel_width, pixel_height), real valued logits
:param x: shape (batchsize, num_channels, pixel_width, pixel_height), pixel values rescaled between [0, 1].
:param z_mu: mean of z_0
:param z_var: variance of z_0
:param z_0: first stochastic latent variable
:param z_k: last stochastic latent variable
:param ldj: log det jacobian
:param args: global parameter settings
:param beta: beta for kl loss
:return: loss, ce, kl
"""
batch_size = z.size(0)
# Get array loss, sum over batch
loss_array, bpd_array, bpd_per_prior_array = \
compute_loss_array(pz, z, pys, ys, ldj, args)
loss = torch.mean(loss_array)
bpd = torch.mean(bpd_array).item()
bpd_per_prior = [torch.mean(x) for x in bpd_per_prior_array]
return loss, bpd, bpd_per_prior
def convert_bpd(log_p, input_size):
return -log_p / (np.prod(input_size) * np.log(2.))
def compute_loss_array(pz, z, pys, ys, ldj, args):
"""
Computes the cross entropy loss function while summing over batch dimension, not averaged!
:param x_logit: shape: (batch_size, num_classes * num_channels, pixel_width, pixel_height), real valued logits
:param x: shape (batchsize, num_channels, pixel_width, pixel_height), pixel values rescaled between [0, 1].
:param z_mu: mean of z_0
:param z_var: variance of z_0
:param z_0: first stochastic latent variable
:param z_k: last stochastic latent variable
:param ldj: log det jacobian
:param args: global parameter settings
:param beta: beta for kl loss
:return: loss, ce, kl
"""
bpd_per_prior = []
# Likelihood of final representation.
log_pz = compute_log_pz(pz, z, args)
bpd_per_prior.append(convert_bpd(log_pz.detach(), args.input_size))
log_p = log_pz
# Add likelihoods of intermediate representations.
if ys:
log_pys = compute_log_ps(pys, ys, args)
for log_py in log_pys:
log_p += log_py
bpd_per_prior.append(convert_bpd(log_py.detach(), args.input_size))
log_p += ldj
loss = -log_p
bpd = convert_bpd(log_p.detach(), args.input_size)
return loss, bpd, bpd_per_prior
def calculate_loss(pz, z, pys, ys, ldj, loss_aux, args):
return compute_loss_function(pz, z, pys, ys, ldj, loss_aux, args)