changes to training + added autoencoder

This commit is contained in:
RobinMeersman 2025-12-13 17:53:01 +01:00
parent 6e591bb470
commit a4a41d190b
7 changed files with 91 additions and 55 deletions

View file

@ -5,15 +5,16 @@ from src.models import Model
class Encoder(nn.Module):
def __init__(self, input_size, hidden_size, latent_dim):
def __init__(self, data_length, channel_count, latent_dim):
super(Encoder, self).__init__()
self._encoder = nn.Sequential(*[
nn.Conv1d(input_size, hidden_size, kernel_size=3, padding=1),
nn.BatchNorm1d(hidden_size),
nn.Conv1d(1, channel_count, kernel_size=3, padding=1), # (hidden_size, L)
nn.BatchNorm1d(channel_count),
nn.ReLU(),
nn.Conv1d(hidden_size, 2 * hidden_size, stride=2, kernel_size=3, padding=1),
nn.BatchNorm1d(2 * hidden_size),
nn.Linear(2 * hidden_size, latent_dim),
nn.Conv1d(channel_count, 2 * channel_count, stride=2, kernel_size=3, padding=1), # (2 * hidden_size, L / 2)
nn.BatchNorm1d(2 * channel_count),
nn.Flatten(), # 2 * hidden_size * L / 2
nn.Linear(2 * channel_count * data_length // 2, latent_dim),
nn.ReLU()
])
@ -22,27 +23,28 @@ class Encoder(nn.Module):
class Decoder(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
def __init__(self, latent_dim, channel_count, data_length):
super(Decoder, self).__init__()
super._decoder = nn.Sequential(*[
nn.Linear(input_size, 2 * hidden_size),
self._decoder = nn.Sequential(*[
nn.Linear(latent_dim, 2 * channel_count * data_length // 2),
nn.ReLU(),
nn.BatchNorm1d(2 * hidden_size),
nn.ConvTranspose1d(2 * hidden_size, hidden_size, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm1d(hidden_size),
nn.Unflatten(1, (2 * channel_count, data_length // 2)),
nn.BatchNorm1d(2 * channel_count),
nn.ConvTranspose1d(2 * channel_count, channel_count, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm1d(channel_count),
nn.ReLU(),
nn.ConvTranspose1d(hidden_size, output_size, kernel_size=3, padding=1),
nn.ConvTranspose1d(channel_count, 1, kernel_size=3, padding=1),
])
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self._decoder(x)
class AutoEncoder(Model):
def __init__(self, input_size, hidden_size, latent_dim):
super().__init__(loss_function = nn.CrossEntropyLoss())
def __init__(self, input_size, channel_count, latent_dim):
super().__init__(loss_function = nn.MSELoss())
self.encoder = Encoder(input_size, hidden_size, latent_dim)
self.decoder = Decoder(latent_dim, hidden_size, input_size)
self.encoder = Encoder(input_size, channel_count, latent_dim)
self.decoder = Decoder(latent_dim, channel_count, input_size)
def encode(self, x: torch.Tensor) -> torch.Tensor:
return self.encoder(x)
@ -50,5 +52,11 @@ class AutoEncoder(Model):
def decode(self, x: torch.Tensor) -> torch.Tensor:
return self.decoder(x)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.decode(self.encode(x))
def forward(self, x: torch.LongTensor) -> torch.Tensor:
x = x.float() / 255.0 # convert to floats
x = x.unsqueeze(1) # add channel dimension --> (B, 1, L)
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded