backup
This commit is contained in:
parent
41d22d9dd5
commit
6e591bb470
3 changed files with 13 additions and 8 deletions
|
|
@ -1,8 +1,10 @@
|
|||
from .Model import Model
|
||||
from .autoencoder import AutoEncoder
|
||||
from .cnn import CNNPredictor
|
||||
from .transformer import ByteTransformer
|
||||
|
||||
model_called: dict[str, type[Model]] = {
|
||||
'cnn': CNNPredictor,
|
||||
'transformer': ByteTransformer
|
||||
'transformer': ByteTransformer,
|
||||
'autoencoder': AutoEncoder
|
||||
}
|
||||
|
|
|
|||
1
src/models/autoencoder/__init__.py
Normal file
1
src/models/autoencoder/__init__.py
Normal file
|
|
@ -0,0 +1 @@
|
|||
from .autoencoder import AutoEncoder
|
||||
|
|
@ -1,6 +1,8 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from src.models import Model
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(self, input_size, hidden_size, latent_dim):
|
||||
|
|
@ -23,21 +25,21 @@ class Decoder(nn.Module):
|
|||
def __init__(self, input_size, hidden_size, output_size):
|
||||
super(Decoder, self).__init__()
|
||||
super._decoder = nn.Sequential(*[
|
||||
nn.Linear(input_size),
|
||||
nn.Linear(input_size, 2 * hidden_size),
|
||||
nn.ReLU(),
|
||||
nn.BatchNorm1d(input_size),
|
||||
nn.ConvTranspose1d(input_size, 2 * hidden_size, kernel_size=3, stride=2, padding=1, output_padding=1),
|
||||
nn.BatchNorm1d(2 * hidden_size),
|
||||
nn.ConvTranspose1d(2 * hidden_size, hidden_size, kernel_size=3, stride=2, padding=1, output_padding=1),
|
||||
nn.BatchNorm1d(hidden_size),
|
||||
nn.ReLU(),
|
||||
nn.ConvTranspose1d(2 * hidden_size, output_size, kernel_size=3, padding=1),
|
||||
nn.ConvTranspose1d(hidden_size, output_size, kernel_size=3, padding=1),
|
||||
])
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
pass
|
||||
return self._decoder(x)
|
||||
|
||||
class AutoEncoder(nn.Module):
|
||||
class AutoEncoder(Model):
|
||||
def __init__(self, input_size, hidden_size, latent_dim):
|
||||
super(AutoEncoder, self).__init__()
|
||||
super().__init__(loss_function = nn.CrossEntropyLoss())
|
||||
|
||||
self.encoder = Encoder(input_size, hidden_size, latent_dim)
|
||||
self.decoder = Decoder(latent_dim, hidden_size, input_size)
|
||||
Reference in a new issue