feat: Choose dataset with options

This commit is contained in:
Tibo De Peuter 2025-11-30 20:19:39 +01:00
parent 20bdd4f566
commit 81c767371e
Signed by: tdpeuter
GPG key ID: 38297DE43F75FFE2
5 changed files with 67 additions and 60 deletions

View file

@ -10,11 +10,14 @@ Author: Tibo De Peuter
class Dataset(TorchDataset, ABC):
"""Abstract base class for datasets."""
@abstractmethod
def __init__(self, root: str, transform: Callable = None):
def __init__(self, name: str, root: str | None, transform: Callable = None):
"""
:param root: Relative path to the dataset root directory
"""
self._root: str = join(curdir, 'data', root)
if root is None:
root = join(curdir, 'data')
self._root = join(root, name)
self.transform = transform
self.dataset = None

View file

@ -1,18 +1,20 @@
from datasets import load_dataset
from torch.utils.data import Dataset
import torch
from os.path import curdir, join
from typing import Callable
import torch
from datasets import load_dataset
from .Dataset import Dataset
class EnWik9DataSet(Dataset):
def __init__(self, root: str = "data", transform: Callable | None = None):
super().__init__()
self.transform = transform
"""
Hugging Face: https://huggingface.co/datasets/haukur/enwik9
"""
def __init__(self, root: str | None = None, transform: Callable | None = None):
super().__init__('enwik9', root, transform)
# HuggingFace dataset: string text
path = join(curdir, root)
data = load_dataset("haukur/enwik9", cache_dir=path, split="train")
data = load_dataset("haukur/enwik9", cache_dir=self.root, split="train")
# Extract raw text
text = data["text"]
@ -31,7 +33,7 @@ class EnWik9DataSet(Dataset):
def __getitem__(self, idx):
# context window
x = self.data[idx : idx + self.context_length]
x = self.data[idx: idx + self.context_length]
# next byte target
y = self.data[idx + self.context_length]
@ -40,4 +42,3 @@ class EnWik9DataSet(Dataset):
x = self.transform(x)
return x, y

View file

@ -1,21 +1,19 @@
from typing import Callable
import torch
from os.path import curdir, join
from lorem.text import TextLorem
from .Dataset import Dataset
class LoremIpsumDataset(Dataset):
def __init__(self, root: str = "data", transform: Callable = None):
super().__init__(root, transform)
def __init__(self, root: str | None = None, transform: Callable = None, size: int = 512):
super().__init__('lorem_ipsum', root, transform)
# Generate text and convert to bytes
_lorem = TextLorem()
_text = ' '.join(_lorem._word() for _ in range(512))
_text = ' '.join(_lorem._word() for _ in range(size))
path = join(curdir, "data")
self._root = path
# Convert text to bytes (UTF-8 encoded)
self.dataset = torch.tensor([ord(c) % 256 for c in list(_text)], dtype=torch.long)
self.context_length = 128

View file

@ -1,3 +1,8 @@
from .Dataset import Dataset
from .EnWik9 import EnWik9DataSet
from .LoremIpsumDataset import LoremIpsumDataset
from .Dataset import Dataset
dataset_called: dict[str, type[Dataset]] = {
'enwik9': EnWik9DataSet,
'lorem_ipsum': LoremIpsumDataset
}

View file

@ -4,61 +4,61 @@ from math import ceil
import torch
from torch.utils.data import DataLoader
from dataset_loaders import EnWik9DataSet, LoremIpsumDataset, Dataset
from dataset_loaders import dataset_called
from trainers import OptunaTrainer, Trainer, FullTrainer
BATCH_SIZE = 64
if torch.cuda.is_available():
DEVICE = "cuda"
elif torch.backends.mps.is_available():
DEVICE = "mps"
if torch.accelerator.is_available():
DEVICE = torch.accelerator.current_accelerator().type
else:
DEVICE = "cpu"
# hyper parameters
context_length = 128
if __name__ == "__main__":
print(f"Running on device: {DEVICE}...")
parser = ArgumentParser()
parser.add_argument("--method", choices=["optuna", "train"], required=True)
parser.add_argument("--model-path", type=str, required=False)
args = parser.parse_args()
print(f"Running on device: {DEVICE}...")
parser = ArgumentParser()
parser.add_argument("--method", choices=["optuna", "train"], required=True)
parser.add_argument("--model-path", type=str, required=False)
print("Loading in the dataset...")
if args.method == "train":
dataset: Dataset = EnWik9DataSet(transform=lambda x: x.to(DEVICE))
elif args.method == "optuna":
dataset: Dataset = LoremIpsumDataset(transform=lambda x: x.to(DEVICE))
else:
raise ValueError(f"Unknown method: {args.method}")
parser.add_argument_group("Data", "Data files or dataset to use")
parser.add_argument("--data-root", type=str, required=False)
parser.add_argument("dataset")
args = parser.parse_args()
dataset_length = len(dataset)
print(f"Dataset size = {dataset_length}")
print("Loading in the dataset...")
if args.dataset in dataset_called:
dataset = dataset_called[args.dataset](root=args.data_root, transform=lambda x: x.to(DEVICE))
else:
# TODO Allow to import arbitrary files
raise NotImplementedError(f"Importing external datasets is not implemented yet")
training_size = ceil(0.8 * dataset_length)
dataset_length = len(dataset)
print(f"Dataset size = {dataset_length}")
print(f"Training set size = {training_size}, Validation set size {dataset_length - training_size}")
training_size = ceil(0.8 * dataset_length)
train_set, validate_set = torch.utils.data.random_split(dataset,
[training_size, dataset_length - training_size])
training_loader = DataLoader(train_set, batch_size=BATCH_SIZE, shuffle=True)
validation_loader = DataLoader(validate_set, batch_size=BATCH_SIZE, shuffle=False)
loss_fn = torch.nn.CrossEntropyLoss()
print(f"Training set size = {training_size}, Validation set size {dataset_length - training_size}")
model = None
if args.model_path is not None:
print("Loading the model...")
model = torch.load(args.model_path)
train_set, validate_set = torch.utils.data.random_split(dataset,
[training_size, dataset_length - training_size])
training_loader = DataLoader(train_set, batch_size=BATCH_SIZE, shuffle=True)
validation_loader = DataLoader(validate_set, batch_size=BATCH_SIZE, shuffle=False)
loss_fn = torch.nn.CrossEntropyLoss()
trainer: Trainer = OptunaTrainer() if args.method == "optuna" else FullTrainer()
model = None
if args.model_path is not None:
print("Loading the model...")
model = torch.load(args.model_path)
trainer.execute(
model=model,
train_loader=training_loader,
validation_loader=validation_loader,
loss_fn=loss_fn,
n_epochs=200,
device=DEVICE
)
trainer: Trainer = OptunaTrainer() if args.method == "optuna" else FullTrainer()
trainer.execute(
model=model,
train_loader=training_loader,
validation_loader=validation_loader,
loss_fn=loss_fn,
n_epochs=200,
device=DEVICE
)