This repository has been archived on 2025-12-23. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
2025ML-project-neural_compr.../CNN-model/main_cnn.py

64 lines
2 KiB
Python

from argparse import ArgumentParser
from math import ceil
import torch
from torch.utils.data import DataLoader
from dataset_loaders import dataset_called
from trainers import OptunaTrainer, Trainer, FullTrainer
BATCH_SIZE = 64
if torch.accelerator.is_available():
DEVICE = torch.accelerator.current_accelerator().type
else:
DEVICE = "cpu"
# hyper parameters
context_length = 128
print(f"Running on device: {DEVICE}...")
parser = ArgumentParser()
parser.add_argument("--method", choices=["optuna", "train"], required=True)
parser.add_argument("--model-path", type=str, required=False)
parser.add_argument_group("Data", "Data files or dataset to use")
parser.add_argument("--data-root", type=str, required=False)
parser.add_argument("dataset")
args = parser.parse_args()
print("Loading in the dataset...")
if args.dataset in dataset_called:
dataset = dataset_called[args.dataset](root=args.data_root, transform=lambda x: x.to(DEVICE))
else:
# TODO Allow to import arbitrary files
raise NotImplementedError(f"Importing external datasets is not implemented yet")
dataset_length = len(dataset)
print(f"Dataset size = {dataset_length}")
training_size = ceil(0.8 * dataset_length)
print(f"Training set size = {training_size}, Validation set size {dataset_length - training_size}")
train_set, validate_set = torch.utils.data.random_split(dataset,
[training_size, dataset_length - training_size])
training_loader = DataLoader(train_set, batch_size=BATCH_SIZE, shuffle=True)
validation_loader = DataLoader(validate_set, batch_size=BATCH_SIZE, shuffle=False)
loss_fn = torch.nn.CrossEntropyLoss()
model = None
if args.model_path is not None:
print("Loading the model...")
model = torch.load(args.model_path)
trainer: Trainer = OptunaTrainer() if args.method == "optuna" else FullTrainer()
trainer.execute(
model=model,
train_loader=training_loader,
validation_loader=validation_loader,
loss_fn=loss_fn,
n_epochs=200,
device=DEVICE
)