chore(transformer-xl): Initial commit
This commit is contained in:
parent
ef4684ef39
commit
10512876f2
46 changed files with 10547 additions and 0 deletions
102
transformer-xl/tf/scripts/enwik8_base_gpu.sh
Normal file
102
transformer-xl/tf/scripts/enwik8_base_gpu.sh
Normal file
|
|
@ -0,0 +1,102 @@
|
|||
#!/bin/bash
|
||||
|
||||
# Data
|
||||
DATA_ROOT=../data/enwik8/
|
||||
|
||||
# Model
|
||||
N_LAYER=12
|
||||
D_MODEL=512
|
||||
D_EMBED=512
|
||||
N_HEAD=8
|
||||
D_HEAD=64
|
||||
D_INNER=2048
|
||||
|
||||
# Training
|
||||
TGT_LEN=512
|
||||
MEM_LEN=512
|
||||
|
||||
BSZ=24
|
||||
NUM_CORE=4
|
||||
|
||||
# Testing
|
||||
TEST_TGT_LEN=80
|
||||
TEST_MEM_LEN=2100
|
||||
TEST_CLAMP_LEN=820
|
||||
|
||||
TEST_BSZ=10
|
||||
TEST_NUM_CORE=1
|
||||
|
||||
if [[ $1 == 'train_data' ]]; then
|
||||
python data_utils.py \
|
||||
--data_dir=${DATA_ROOT}/ \
|
||||
--dataset=enwik8 \
|
||||
--tgt_len=${TGT_LEN} \
|
||||
--per_host_train_bsz=${BSZ} \
|
||||
--per_host_valid_bsz=${BSZ} \
|
||||
--num_passes=1 \
|
||||
--use_tpu=False \
|
||||
${@:2}
|
||||
elif [[ $1 == 'test_data' ]]; then
|
||||
python data_utils.py \
|
||||
--data_dir=${DATA_ROOT}/ \
|
||||
--dataset=enwik8 \
|
||||
--tgt_len=${TEST_TGT_LEN} \
|
||||
--per_host_test_bsz=${TEST_BSZ} \
|
||||
--num_passes=1 \
|
||||
--use_tpu=False \
|
||||
${@:2}
|
||||
elif [[ $1 == 'train' ]]; then
|
||||
echo 'Run training...'
|
||||
python train_gpu.py \
|
||||
--data_dir=${DATA_ROOT}/tfrecords \
|
||||
--record_info_dir=${DATA_ROOT}/tfrecords/ \
|
||||
--corpus_info_path=${DATA_ROOT}/corpus-info.json \
|
||||
--model_dir=EXP-enwik8 \
|
||||
--n_layer=${N_LAYER} \
|
||||
--d_model=${D_MODEL} \
|
||||
--d_embed=${D_EMBED} \
|
||||
--n_head=${N_HEAD} \
|
||||
--d_head=${D_HEAD} \
|
||||
--d_inner=${D_INNER} \
|
||||
--dropout=0.1 \
|
||||
--dropatt=0.0 \
|
||||
--learning_rate=0.00025 \
|
||||
--warmup_steps=0 \
|
||||
--train_steps=400000 \
|
||||
--tgt_len=${TGT_LEN} \
|
||||
--mem_len=${MEM_LEN} \
|
||||
--train_batch_size=${BSZ} \
|
||||
--num_core_per_host=${NUM_CORE} \
|
||||
--iterations=200 \
|
||||
--save_steps=4000 \
|
||||
--do_train=True \
|
||||
--do_eval=False \
|
||||
${@:2}
|
||||
elif [[ $1 == 'eval' ]]; then
|
||||
echo 'Run evaluation...'
|
||||
python train_gpu.py \
|
||||
--data_dir=${DATA_ROOT}/tfrecords \
|
||||
--record_info_dir=${DATA_ROOT}/tfrecords/ \
|
||||
--corpus_info_path=${DATA_ROOT}/corpus-info.json \
|
||||
--model_dir=EXP-enwik8 \
|
||||
--n_layer=${N_LAYER} \
|
||||
--d_model=${D_MODEL} \
|
||||
--d_embed=${D_EMBED} \
|
||||
--n_head=${N_HEAD} \
|
||||
--d_head=${D_HEAD} \
|
||||
--d_inner=${D_INNER} \
|
||||
--dropout=0.0 \
|
||||
--dropatt=0.0 \
|
||||
--tgt_len=${TEST_TGT_LEN} \
|
||||
--mem_len=${TEST_MEM_LEN} \
|
||||
--clamp_len=${TEST_CLAMP_LEN} \
|
||||
--same_length=True \
|
||||
--eval_batch_size=${TEST_BSZ} \
|
||||
--num_core_per_host=${TEST_NUM_CORE} \
|
||||
--do_train=False \
|
||||
--do_eval=True \
|
||||
--eval_split=test \
|
||||
${@:2}
|
||||
else
|
||||
echo 'unknown argment 1'
|
||||
fi
|
||||
122
transformer-xl/tf/scripts/enwik8_large_tpu.sh
Normal file
122
transformer-xl/tf/scripts/enwik8_large_tpu.sh
Normal file
|
|
@ -0,0 +1,122 @@
|
|||
#!/bin/bash
|
||||
|
||||
# Path
|
||||
LOCAL_DIR=../data/enwik8/
|
||||
GSDATA=
|
||||
GSEXP=
|
||||
|
||||
# TPU setting
|
||||
NUM_HOST=2
|
||||
NUM_CORE=16 # TPUv2 -> 8 | TPUv3 -> 16
|
||||
|
||||
TEST_NUM_HOST=1
|
||||
TEST_NUM_CORE=8 # TPUv2 -> 8 | TPUv3 -> 16
|
||||
|
||||
# Model
|
||||
N_LAYER=24
|
||||
D_MODEL=1024
|
||||
D_EMBED=1024
|
||||
N_HEAD=8
|
||||
D_HEAD=128
|
||||
D_INNER=3072
|
||||
|
||||
# Training
|
||||
TGT_LEN=768
|
||||
MEM_LEN=768
|
||||
TRAIN_BSZ=64
|
||||
VALID_BSZ=64
|
||||
|
||||
# Testing
|
||||
TEST_TGT_LEN=128
|
||||
TEST_MEM_LEN=3800
|
||||
TEST_CLAMP_LEN=1000
|
||||
TEST_BSZ=16
|
||||
|
||||
if [[ $1 == 'train_data' ]]; then
|
||||
python data_utils.py \
|
||||
--data_dir=${LOCAL_DIR}/ \
|
||||
--dataset=enwik8 \
|
||||
--tgt_len=${TGT_LEN} \
|
||||
--per_host_train_bsz=${TRAIN_BSZ} \
|
||||
--per_host_valid_bsz=${VALID_BSZ} \
|
||||
--num_core_per_host=${NUM_CORE} \
|
||||
--num_passes=10 \
|
||||
--use_tpu=True \
|
||||
${@:2}
|
||||
|
||||
SRC_PATTERN=train.bsz-${TRAIN_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}*
|
||||
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/enwik8-tfrecords/
|
||||
|
||||
SRC_PATTERN=valid.bsz-${VALID_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}*
|
||||
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/enwik8-tfrecords/
|
||||
|
||||
elif [[ $1 == 'test_data' ]]; then
|
||||
python data_utils.py \
|
||||
--data_dir=${LOCAL_DIR}/ \
|
||||
--dataset=enwik8 \
|
||||
--tgt_len=${TEST_TGT_LEN} \
|
||||
--per_host_test_bsz=${TEST_BSZ} \
|
||||
--num_core_per_host=${TEST_NUM_CORE} \
|
||||
--num_passes=1 \
|
||||
--use_tpu=True \
|
||||
${@:2}
|
||||
|
||||
SRC_PATTERN=test.bsz-${TEST_BSZ}.tlen-${TEST_TGT_LEN}.core-${TEST_NUM_CORE}*
|
||||
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/enwik8-tfrecords/
|
||||
|
||||
elif [[ $1 == 'train' ]]; then
|
||||
echo 'Run training...'
|
||||
python train.py \
|
||||
--data_dir=${GSDATA}/enwik8-tfrecords \
|
||||
--record_info_dir=${LOCAL_DIR}/tfrecords/ \
|
||||
--corpus_info_path=${LOCAL_DIR}/corpus-info.json \
|
||||
--model_dir=${GSEXP}/enwik8 \
|
||||
--n_layer=${N_LAYER} \
|
||||
--d_model=${D_MODEL} \
|
||||
--d_embed=${D_EMBED} \
|
||||
--n_head=${N_HEAD} \
|
||||
--d_head=${D_HEAD} \
|
||||
--d_inner=${D_INNER} \
|
||||
--dropout=0.15 \
|
||||
--dropatt=0.15 \
|
||||
--learning_rate=0.00025 \
|
||||
--warmup_steps=4000 \
|
||||
--train_steps=400000 \
|
||||
--tgt_len=${TGT_LEN} \
|
||||
--mem_len=${MEM_LEN} \
|
||||
--train_batch_size=${TRAIN_BSZ} \
|
||||
--use_tpu=True \
|
||||
--num_host=${NUM_HOST} \
|
||||
--num_core_per_host=${NUM_CORE} \
|
||||
--iterations=1000 \
|
||||
--save_steps=10000 \
|
||||
--do_train=True \
|
||||
--do_eval=False \
|
||||
${@:2}
|
||||
|
||||
elif [[ $1 == 'eval' ]]; then
|
||||
echo 'Run evaluation...'
|
||||
python train.py \
|
||||
--data_dir=${GSDATA}/enwik8-tfrecords \
|
||||
--record_info_dir=${LOCAL_DIR}/tfrecords/ \
|
||||
--corpus_info_path=${LOCAL_DIR}/corpus-info.json \
|
||||
--model_dir=${GSEXP}/enwik8 \
|
||||
--n_layer=${N_LAYER} \
|
||||
--d_model=${D_MODEL} \
|
||||
--d_embed=${D_EMBED} \
|
||||
--n_head=${N_HEAD} \
|
||||
--d_head=${D_HEAD} \
|
||||
--d_inner=${D_INNER} \
|
||||
--tgt_len=${TEST_TGT_LEN} \
|
||||
--mem_len=${TEST_MEM_LEN} \
|
||||
--eval_batch_size=${TEST_BSZ} \
|
||||
--num_host=${TEST_NUM_HOST} \
|
||||
--num_core_per_host=${TEST_NUM_CORE} \
|
||||
--use_tpu=True \
|
||||
--do_train=False \
|
||||
--do_eval_only=True \
|
||||
--eval_split=test \
|
||||
${@:2}
|
||||
else
|
||||
echo 'unknown argment 1'
|
||||
fi
|
||||
110
transformer-xl/tf/scripts/lm1b_base_gpu.sh
Normal file
110
transformer-xl/tf/scripts/lm1b_base_gpu.sh
Normal file
|
|
@ -0,0 +1,110 @@
|
|||
#!/bin/bash
|
||||
|
||||
# Data
|
||||
DATA_ROOT=../data/one-billion-words/
|
||||
|
||||
# Model
|
||||
DIV_VAL=4
|
||||
N_LAYER=18
|
||||
D_MODEL=1024
|
||||
D_EMBED=1024
|
||||
N_HEAD=8
|
||||
D_HEAD=128
|
||||
D_INNER=4096
|
||||
|
||||
# Training
|
||||
TGT_LEN=256
|
||||
MEM_LEN=256
|
||||
|
||||
BSZ=256
|
||||
NUM_CORE=4
|
||||
|
||||
# Testing
|
||||
TEST_TGT_LEN=32
|
||||
TEST_MEM_LEN=128
|
||||
TEST_CLAMP_LEN=-1
|
||||
|
||||
TEST_BSZ=16
|
||||
TEST_NUM_CORE=1
|
||||
|
||||
|
||||
if [[ $1 == 'train_data' ]]; then
|
||||
python data_utils.py \
|
||||
--data_dir=${DATA_ROOT}/ \
|
||||
--dataset=lm1b \
|
||||
--tgt_len=${TGT_LEN} \
|
||||
--per_host_train_bsz=${BSZ} \
|
||||
--per_host_valid_bsz=${BSZ} \
|
||||
--num_passes=1 \
|
||||
--use_tpu=False \
|
||||
${@:2}
|
||||
elif [[ $1 == 'test_data' ]]; then
|
||||
python data_utils.py \
|
||||
--data_dir=${DATA_ROOT}/ \
|
||||
--dataset=lm1b \
|
||||
--tgt_len=${TEST_TGT_LEN} \
|
||||
--per_host_test_bsz=${TEST_BSZ} \
|
||||
--num_passes=1 \
|
||||
--use_tpu=False \
|
||||
${@:2}
|
||||
elif [[ $1 == 'train' ]]; then
|
||||
echo 'Run training...'
|
||||
python train_gpu.py \
|
||||
--data_dir=${DATA_ROOT}/tfrecords \
|
||||
--record_info_dir=${DATA_ROOT}/tfrecords/ \
|
||||
--corpus_info_path=${DATA_ROOT}/corpus-info.json \
|
||||
--model_dir=EXP-lm1b \
|
||||
--div_val=${DIV_VAL} \
|
||||
--untie_r=True \
|
||||
--proj_share_all_but_first=False \
|
||||
--proj_same_dim=False \
|
||||
--n_layer=${N_LAYER} \
|
||||
--d_model=${D_MODEL} \
|
||||
--d_embed=${D_EMBED} \
|
||||
--n_head=${N_HEAD} \
|
||||
--d_head=${D_HEAD} \
|
||||
--d_inner=${D_INNER} \
|
||||
--dropout=0.1 \
|
||||
--dropatt=0.0 \
|
||||
--learning_rate=0.00025 \
|
||||
--warmup_steps=0 \
|
||||
--train_steps=400000 \
|
||||
--tgt_len=${TGT_LEN} \
|
||||
--mem_len=${MEM_LEN} \
|
||||
--train_batch_size=${BSZ} \
|
||||
--num_core_per_host=${NUM_CORE} \
|
||||
--iterations=200 \
|
||||
--save_steps=4000 \
|
||||
${@:2}
|
||||
elif [[ $1 == 'eval' ]]; then
|
||||
echo 'Run evaluation...'
|
||||
python train_gpu.py \
|
||||
--data_dir=${DATA_ROOT}/tfrecords \
|
||||
--record_info_dir=${DATA_ROOT}/tfrecords/ \
|
||||
--corpus_info_path=${DATA_ROOT}/corpus-info.json \
|
||||
--model_dir=EXP-lm1b \
|
||||
--div_val=${DIV_VAL} \
|
||||
--untie_r=True \
|
||||
--proj_share_all_but_first=False \
|
||||
--proj_same_dim=False \
|
||||
--n_layer=${N_LAYER} \
|
||||
--d_model=${D_MODEL} \
|
||||
--d_embed=${D_EMBED} \
|
||||
--n_head=${N_HEAD} \
|
||||
--d_head=${D_HEAD} \
|
||||
--d_inner=${D_INNER} \
|
||||
--dropout=0.0 \
|
||||
--dropatt=0.0 \
|
||||
--tgt_len=${TEST_TGT_LEN} \
|
||||
--mem_len=${TEST_MEM_LEN} \
|
||||
--clamp_len=${TEST_CLAMP_LEN} \
|
||||
--same_length=True \
|
||||
--eval_batch_size=${TEST_BSZ} \
|
||||
--num_core_per_host=${TEST_NUM_CORE} \
|
||||
--do_train=False \
|
||||
--do_eval=True \
|
||||
--eval_split=test \
|
||||
${@:2}
|
||||
else
|
||||
echo 'unknown argment 1'
|
||||
fi
|
||||
136
transformer-xl/tf/scripts/lm1b_large_tpu.sh
Normal file
136
transformer-xl/tf/scripts/lm1b_large_tpu.sh
Normal file
|
|
@ -0,0 +1,136 @@
|
|||
#!/bin/bash
|
||||
|
||||
# Path
|
||||
LOCAL_DIR=../data/one-billion-words/
|
||||
GSDATA=
|
||||
GSEXP=
|
||||
|
||||
# TPU setting
|
||||
NUM_HOST=32
|
||||
NUM_CORE=16 # TPUv2 -> 8 | TPUv3 -> 16
|
||||
|
||||
TEST_NUM_HOST=1
|
||||
TEST_NUM_CORE=8 # TPUv2 -> 8 | TPUv3 -> 16
|
||||
|
||||
# Model
|
||||
DIV_VAL=4
|
||||
N_LAYER=24
|
||||
D_MODEL=1280
|
||||
D_EMBED=1280
|
||||
N_HEAD=16
|
||||
D_HEAD=80
|
||||
D_INNER=8192
|
||||
|
||||
# Training
|
||||
TGT_LEN=32
|
||||
MEM_LEN=32
|
||||
TRAIN_BSZ=512
|
||||
VALID_BSZ=512
|
||||
TRAIN_BSZ_PER_HOST=$((TRAIN_BSZ / NUM_HOST))
|
||||
VALID_BSZ_PER_HOST=$((VALID_BSZ / NUM_HOST))
|
||||
|
||||
# Testing
|
||||
TEST_TGT_LEN=32
|
||||
TEST_MEM_LEN=128
|
||||
TEST_CLAMP_LEN=-1
|
||||
TEST_BSZ=8
|
||||
|
||||
if [[ $1 == 'train_data' ]]; then
|
||||
python data_utils.py \
|
||||
--data_dir=${LOCAL_DIR}/ \
|
||||
--dataset=lm1b \
|
||||
--tgt_len=${TGT_LEN} \
|
||||
--per_host_train_bsz=${TRAIN_BSZ_PER_HOST} \
|
||||
--per_host_valid_bsz=${VALID_BSZ_PER_HOST} \
|
||||
--num_core_per_host=${NUM_CORE} \
|
||||
--num_passes=10 \
|
||||
--use_tpu=True \
|
||||
${@:2}
|
||||
|
||||
SRC_PATTERN=train.bsz-${TRAIN_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}*
|
||||
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/lm1b-tfrecords/
|
||||
|
||||
SRC_PATTERN=valid.bsz-${VALID_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}*
|
||||
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/lm1b-tfrecords/
|
||||
|
||||
elif [[ $1 == 'test_data' ]]; then
|
||||
python data_utils.py \
|
||||
--data_dir=${LOCAL_DIR}/ \
|
||||
--dataset=lm1b \
|
||||
--tgt_len=${TEST_TGT_LEN} \
|
||||
--per_host_test_bsz=${TEST_BSZ} \
|
||||
--num_core_per_host=${TEST_NUM_CORE} \
|
||||
--num_passes=1 \
|
||||
--use_tpu=True \
|
||||
${@:2}
|
||||
|
||||
SRC_PATTERN=test.bsz-${TEST_BSZ}.tlen-${TEST_TGT_LEN}.core-${TEST_NUM_CORE}*
|
||||
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/lm1b-tfrecords/
|
||||
|
||||
elif [[ $1 == 'train' ]]; then
|
||||
echo 'Run training...'
|
||||
python train.py \
|
||||
--data_dir=${GSDATA}/lm1b-tfrecords \
|
||||
--record_info_dir=${LOCAL_DIR}/tfrecords/ \
|
||||
--corpus_info_path=${LOCAL_DIR}/corpus-info.json \
|
||||
--model_dir=${GSEXP}/lm1b \
|
||||
--div_val=${DIV_VAL} \
|
||||
--untie_r=True \
|
||||
--proj_share_all_but_first=False \
|
||||
--proj_same_dim=False \
|
||||
--n_layer=${N_LAYER} \
|
||||
--d_model=${D_MODEL} \
|
||||
--d_embed=${D_EMBED} \
|
||||
--n_head=${N_HEAD} \
|
||||
--d_head=${D_HEAD} \
|
||||
--d_inner=${D_INNER} \
|
||||
--dropout=0.05 \
|
||||
--dropatt=0.05 \
|
||||
--init_std=0.005 \
|
||||
--learning_rate=0.0001 \
|
||||
--warmup_steps=30000 \
|
||||
--train_steps=1200000 \
|
||||
--tgt_len=${TGT_LEN} \
|
||||
--mem_len=${MEM_LEN} \
|
||||
--train_batch_size=${TRAIN_BSZ} \
|
||||
--num_hosts=${NUM_HOST} \
|
||||
--num_core_per_host=${NUM_CORE} \
|
||||
--iterations=1000 \
|
||||
--save_steps=10000 \
|
||||
--use_tpu=True \
|
||||
--do_eval=False \
|
||||
${@:2}
|
||||
|
||||
elif [[ $1 == 'eval' ]]; then
|
||||
echo 'Run evaluation...'
|
||||
python train.py \
|
||||
--data_dir=${GSDATA}/lm1b-tfrecords \
|
||||
--record_info_dir=${LOCAL_DIR}/tfrecords/ \
|
||||
--corpus_info_path=${LOCAL_DIR}/corpus-info.json \
|
||||
--model_dir=${GSEXP}/lm1b \
|
||||
--div_val=${DIV_VAL} \
|
||||
--untie_r=True \
|
||||
--proj_share_all_but_first=False \
|
||||
--proj_same_dim=False \
|
||||
--n_layer=${N_LAYER} \
|
||||
--d_model=${D_MODEL} \
|
||||
--d_embed=${D_EMBED} \
|
||||
--n_head=${N_HEAD} \
|
||||
--d_head=${D_HEAD} \
|
||||
--d_inner=${D_INNER} \
|
||||
--tgt_len=${TEST_TGT_LEN} \
|
||||
--mem_len=${TEST_MEM_LEN} \
|
||||
--clamp_len=${TEST_CLAMP_LEN} \
|
||||
--same_length=True \
|
||||
--eval_batch_size=${TEST_BSZ} \
|
||||
--num_host=${TEST_NUM_HOST} \
|
||||
--num_core_per_host=${TEST_NUM_CORE} \
|
||||
--use_tpu=True \
|
||||
--do_train=False \
|
||||
--do_eval_only=True \
|
||||
--eval_split=test \
|
||||
${@:2}
|
||||
|
||||
else
|
||||
echo 'unknown argment 1'
|
||||
fi
|
||||
102
transformer-xl/tf/scripts/text8_base_gpu.sh
Normal file
102
transformer-xl/tf/scripts/text8_base_gpu.sh
Normal file
|
|
@ -0,0 +1,102 @@
|
|||
#!/bin/bash
|
||||
|
||||
# Data
|
||||
DATA_ROOT=../data/text8/
|
||||
|
||||
# Model
|
||||
N_LAYER=12
|
||||
D_MODEL=512
|
||||
D_EMBED=512
|
||||
N_HEAD=8
|
||||
D_HEAD=64
|
||||
D_INNER=2048
|
||||
|
||||
# Training
|
||||
TGT_LEN=512
|
||||
MEM_LEN=512
|
||||
|
||||
BSZ=24
|
||||
NUM_CORE=4
|
||||
|
||||
# Testing
|
||||
TEST_TGT_LEN=80
|
||||
TEST_MEM_LEN=2100
|
||||
TEST_CLAMP_LEN=820
|
||||
|
||||
TEST_BSZ=10
|
||||
TEST_NUM_CORE=1
|
||||
|
||||
if [[ $1 == 'train_data' ]]; then
|
||||
python data_utils.py \
|
||||
--data_dir=${DATA_ROOT}/ \
|
||||
--dataset=text8 \
|
||||
--tgt_len=${TGT_LEN} \
|
||||
--per_host_train_bsz=${BSZ} \
|
||||
--per_host_valid_bsz=${BSZ} \
|
||||
--num_passes=1 \
|
||||
--use_tpu=False \
|
||||
${@:2}
|
||||
elif [[ $1 == 'test_data' ]]; then
|
||||
python data_utils.py \
|
||||
--data_dir=${DATA_ROOT}/ \
|
||||
--dataset=text8 \
|
||||
--tgt_len=${TEST_TGT_LEN} \
|
||||
--per_host_test_bsz=${TEST_BSZ} \
|
||||
--num_passes=1 \
|
||||
--use_tpu=False \
|
||||
${@:2}
|
||||
elif [[ $1 == 'train' ]]; then
|
||||
echo 'Run training...'
|
||||
python train_gpu.py \
|
||||
--data_dir=${DATA_ROOT}/tfrecords \
|
||||
--record_info_dir=${DATA_ROOT}/tfrecords/ \
|
||||
--corpus_info_path=${DATA_ROOT}/corpus-info.json \
|
||||
--model_dir=EXP-text8 \
|
||||
--n_layer=${N_LAYER} \
|
||||
--d_model=${D_MODEL} \
|
||||
--d_embed=${D_EMBED} \
|
||||
--n_head=${N_HEAD} \
|
||||
--d_head=${D_HEAD} \
|
||||
--d_inner=${D_INNER} \
|
||||
--dropout=0.1 \
|
||||
--dropatt=0.0 \
|
||||
--learning_rate=0.00025 \
|
||||
--warmup_steps=0 \
|
||||
--train_steps=400000 \
|
||||
--tgt_len=${TGT_LEN} \
|
||||
--mem_len=${MEM_LEN} \
|
||||
--train_batch_size=${BSZ} \
|
||||
--num_core_per_host=${NUM_CORE} \
|
||||
--iterations=200 \
|
||||
--save_steps=4000 \
|
||||
--do_train=True \
|
||||
--do_eval=False \
|
||||
${@:2}
|
||||
elif [[ $1 == 'eval' ]]; then
|
||||
echo 'Run evaluation...'
|
||||
python train_gpu.py \
|
||||
--data_dir=${DATA_ROOT}/tfrecords \
|
||||
--record_info_dir=${DATA_ROOT}/tfrecords/ \
|
||||
--corpus_info_path=${DATA_ROOT}/corpus-info.json \
|
||||
--model_dir=EXP-text8 \
|
||||
--n_layer=${N_LAYER} \
|
||||
--d_model=${D_MODEL} \
|
||||
--d_embed=${D_EMBED} \
|
||||
--n_head=${N_HEAD} \
|
||||
--d_head=${D_HEAD} \
|
||||
--d_inner=${D_INNER} \
|
||||
--dropout=0.0 \
|
||||
--dropatt=0.0 \
|
||||
--tgt_len=${TEST_TGT_LEN} \
|
||||
--mem_len=${TEST_MEM_LEN} \
|
||||
--clamp_len=${TEST_CLAMP_LEN} \
|
||||
--same_length=True \
|
||||
--eval_batch_size=${TEST_BSZ} \
|
||||
--num_core_per_host=${TEST_NUM_CORE} \
|
||||
--do_train=False \
|
||||
--do_eval=True \
|
||||
--eval_split=test \
|
||||
${@:2}
|
||||
else
|
||||
echo 'unknown argment 1'
|
||||
fi
|
||||
122
transformer-xl/tf/scripts/text8_large_tpu.sh
Normal file
122
transformer-xl/tf/scripts/text8_large_tpu.sh
Normal file
|
|
@ -0,0 +1,122 @@
|
|||
#!/bin/bash
|
||||
|
||||
# Path
|
||||
LOCAL_DIR=../data/text8/
|
||||
GSDATA=
|
||||
GSEXP=
|
||||
|
||||
# TPU setting
|
||||
NUM_HOST=2
|
||||
NUM_CORE=16 # TPUv2 -> 8 | TPUv3 -> 16
|
||||
|
||||
TEST_NUM_HOST=1
|
||||
TEST_NUM_CORE=8 # TPUv2 -> 8 | TPUv3 -> 16
|
||||
|
||||
# Model
|
||||
N_LAYER=24
|
||||
D_MODEL=1024
|
||||
D_EMBED=1024
|
||||
N_HEAD=8
|
||||
D_HEAD=128
|
||||
D_INNER=3072
|
||||
|
||||
# Training
|
||||
TGT_LEN=768
|
||||
MEM_LEN=768
|
||||
TRAIN_BSZ=64
|
||||
VALID_BSZ=64
|
||||
|
||||
# Testing
|
||||
TEST_TGT_LEN=128
|
||||
TEST_MEM_LEN=3800
|
||||
TEST_CLAMP_LEN=1000
|
||||
TEST_BSZ=16
|
||||
|
||||
if [[ $1 == 'train_data' ]]; then
|
||||
python data_utils.py \
|
||||
--data_dir=${LOCAL_DIR}/ \
|
||||
--dataset=text8 \
|
||||
--tgt_len=${TGT_LEN} \
|
||||
--per_host_train_bsz=${TRAIN_BSZ} \
|
||||
--per_host_valid_bsz=${VALID_BSZ} \
|
||||
--num_core_per_host=${NUM_CORE} \
|
||||
--num_passes=10 \
|
||||
--use_tpu=True \
|
||||
${@:2}
|
||||
|
||||
SRC_PATTERN=train.bsz-${TRAIN_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}*
|
||||
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/text8-tfrecords/
|
||||
|
||||
SRC_PATTERN=valid.bsz-${VALID_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}*
|
||||
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/text8-tfrecords/
|
||||
|
||||
elif [[ $1 == 'test_data' ]]; then
|
||||
python data_utils.py \
|
||||
--data_dir=${LOCAL_DIR}/ \
|
||||
--dataset=text8 \
|
||||
--tgt_len=${TEST_TGT_LEN} \
|
||||
--per_host_test_bsz=${TEST_BSZ} \
|
||||
--num_core_per_host=${TEST_NUM_CORE} \
|
||||
--num_passes=1 \
|
||||
--use_tpu=True \
|
||||
${@:2}
|
||||
|
||||
SRC_PATTERN=test.bsz-${TEST_BSZ}.tlen-${TEST_TGT_LEN}.core-${TEST_NUM_CORE}*
|
||||
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/text8-tfrecords/
|
||||
|
||||
elif [[ $1 == 'train' ]]; then
|
||||
echo 'Run training...'
|
||||
python train.py \
|
||||
--data_dir=${GSDATA}/text8-tfrecords \
|
||||
--record_info_dir=${LOCAL_DIR}/tfrecords/ \
|
||||
--corpus_info_path=${LOCAL_DIR}/corpus-info.json \
|
||||
--model_dir=${GSEXP}/text8 \
|
||||
--n_layer=${N_LAYER} \
|
||||
--d_model=${D_MODEL} \
|
||||
--d_embed=${D_EMBED} \
|
||||
--n_head=${N_HEAD} \
|
||||
--d_head=${D_HEAD} \
|
||||
--d_inner=${D_INNER} \
|
||||
--dropout=0.15 \
|
||||
--dropatt=0.15 \
|
||||
--learning_rate=0.00025 \
|
||||
--warmup_steps=4000 \
|
||||
--train_steps=400000 \
|
||||
--tgt_len=${TGT_LEN} \
|
||||
--mem_len=${MEM_LEN} \
|
||||
--train_batch_size=${TRAIN_BSZ} \
|
||||
--use_tpu=True \
|
||||
--num_host=${NUM_HOST} \
|
||||
--num_core_per_host=${NUM_CORE} \
|
||||
--iterations=1000 \
|
||||
--save_steps=10000 \
|
||||
--do_train=True \
|
||||
--do_eval=False \
|
||||
${@:2}
|
||||
|
||||
elif [[ $1 == 'eval' ]]; then
|
||||
echo 'Run evaluation...'
|
||||
python train.py \
|
||||
--data_dir=${GSDATA}/text8-tfrecords \
|
||||
--record_info_dir=${LOCAL_DIR}/tfrecords/ \
|
||||
--corpus_info_path=${LOCAL_DIR}/corpus-info.json \
|
||||
--model_dir=${GSEXP}/text8 \
|
||||
--n_layer=${N_LAYER} \
|
||||
--d_model=${D_MODEL} \
|
||||
--d_embed=${D_EMBED} \
|
||||
--n_head=${N_HEAD} \
|
||||
--d_head=${D_HEAD} \
|
||||
--d_inner=${D_INNER} \
|
||||
--tgt_len=${TEST_TGT_LEN} \
|
||||
--mem_len=${TEST_MEM_LEN} \
|
||||
--eval_batch_size=${TEST_BSZ} \
|
||||
--num_host=${TEST_NUM_HOST} \
|
||||
--num_core_per_host=${TEST_NUM_CORE} \
|
||||
--use_tpu=True \
|
||||
--do_train=False \
|
||||
--do_eval_only=True \
|
||||
--eval_split=test \
|
||||
${@:2}
|
||||
else
|
||||
echo 'unknown argment 1'
|
||||
fi
|
||||
108
transformer-xl/tf/scripts/wt103_base_gpu.sh
Normal file
108
transformer-xl/tf/scripts/wt103_base_gpu.sh
Normal file
|
|
@ -0,0 +1,108 @@
|
|||
#!/bin/bash
|
||||
|
||||
# Data
|
||||
DATA_ROOT=../data/wikitext-103/
|
||||
|
||||
# Model
|
||||
DIV_VAL=1
|
||||
N_LAYER=16
|
||||
D_MODEL=410
|
||||
D_EMBED=410
|
||||
N_HEAD=10
|
||||
D_HEAD=41
|
||||
D_INNER=2100
|
||||
|
||||
# Training
|
||||
TGT_LEN=150
|
||||
MEM_LEN=150
|
||||
|
||||
BSZ=60
|
||||
NUM_CORE=4
|
||||
|
||||
# Testing
|
||||
TEST_TGT_LEN=64
|
||||
TEST_MEM_LEN=640
|
||||
TEST_CLAMP_LEN=400
|
||||
|
||||
TEST_BSZ=10
|
||||
TEST_NUM_CORE=1
|
||||
|
||||
|
||||
if [[ $1 == 'train_data' ]]; then
|
||||
python data_utils.py \
|
||||
--data_dir=${DATA_ROOT}/ \
|
||||
--dataset=wt103 \
|
||||
--tgt_len=${TGT_LEN} \
|
||||
--per_host_train_bsz=${BSZ} \
|
||||
--per_host_valid_bsz=${BSZ} \
|
||||
--num_passes=1 \
|
||||
--use_tpu=False \
|
||||
${@:2}
|
||||
elif [[ $1 == 'test_data' ]]; then
|
||||
python data_utils.py \
|
||||
--data_dir=${DATA_ROOT}/ \
|
||||
--dataset=enwik8 \
|
||||
--tgt_len=${TEST_TGT_LEN} \
|
||||
--per_host_test_bsz=${TEST_BSZ} \
|
||||
--num_passes=1 \
|
||||
--use_tpu=False \
|
||||
${@:2}
|
||||
elif [[ $1 == 'train' ]]; then
|
||||
echo 'Run training...'
|
||||
python train_gpu.py \
|
||||
--data_dir=${DATA_ROOT}/tfrecords \
|
||||
--record_info_dir=${DATA_ROOT}/tfrecords/ \
|
||||
--corpus_info_path=${DATA_ROOT}/corpus-info.json \
|
||||
--model_dir=EXP-wt103 \
|
||||
--div_val=${DIV_VAL} \
|
||||
--untie_r=True \
|
||||
--proj_share_all_but_first=True \
|
||||
--n_layer=${N_LAYER} \
|
||||
--d_model=${D_MODEL} \
|
||||
--d_embed=${D_EMBED} \
|
||||
--n_head=${N_HEAD} \
|
||||
--d_head=${D_HEAD} \
|
||||
--d_inner=${D_INNER} \
|
||||
--dropout=0.1 \
|
||||
--dropatt=0.0 \
|
||||
--learning_rate=0.00025 \
|
||||
--warmup_steps=0 \
|
||||
--train_steps=400000 \
|
||||
--tgt_len=${TGT_LEN} \
|
||||
--mem_len=${MEM_LEN} \
|
||||
--train_batch_size=${BSZ} \
|
||||
--num_core_per_host=${NUM_CORE} \
|
||||
--iterations=200 \
|
||||
--save_steps=4000 \
|
||||
${@:2}
|
||||
elif [[ $1 == 'eval' ]]; then
|
||||
echo 'Run evaluation...'
|
||||
python train_gpu.py \
|
||||
--data_dir=${DATA_ROOT}/tfrecords \
|
||||
--record_info_dir=${DATA_ROOT}/tfrecords/ \
|
||||
--corpus_info_path=${DATA_ROOT}/corpus-info.json \
|
||||
--model_dir=EXP-wt103 \
|
||||
--div_val=${DIV_VAL} \
|
||||
--untie_r=True \
|
||||
--proj_share_all_but_first=True \
|
||||
--n_layer=${N_LAYER} \
|
||||
--d_model=${D_MODEL} \
|
||||
--d_embed=${D_EMBED} \
|
||||
--n_head=${N_HEAD} \
|
||||
--d_head=${D_HEAD} \
|
||||
--d_inner=${D_INNER} \
|
||||
--dropout=0.0 \
|
||||
--dropatt=0.0 \
|
||||
--tgt_len=${TEST_TGT_LEN} \
|
||||
--mem_len=${TEST_MEM_LEN} \
|
||||
--clamp_len=${TEST_CLAMP_LEN} \
|
||||
--same_length=True \
|
||||
--eval_batch_size=${TEST_BSZ} \
|
||||
--num_core_per_host=${TEST_NUM_CORE} \
|
||||
--do_train=False \
|
||||
--do_eval=True \
|
||||
--eval_split=test \
|
||||
${@:2}
|
||||
else
|
||||
echo 'unknown argment 1'
|
||||
fi
|
||||
134
transformer-xl/tf/scripts/wt103_large_tpu.sh
Normal file
134
transformer-xl/tf/scripts/wt103_large_tpu.sh
Normal file
|
|
@ -0,0 +1,134 @@
|
|||
#!/bin/bash
|
||||
|
||||
# Path
|
||||
LOCAL_DIR=../data/wikitext-103/
|
||||
GSDATA=
|
||||
GSEXP=
|
||||
|
||||
# TPU setting
|
||||
NUM_HOST=4
|
||||
NUM_CORE=16 # TPUv2 -> 8 | TPUv3 -> 16
|
||||
|
||||
TEST_NUM_HOST=1
|
||||
TEST_NUM_CORE=8 # TPUv2 -> 8 | TPUv3 -> 16
|
||||
|
||||
# Model
|
||||
DIV_VAL=4
|
||||
N_LAYER=18
|
||||
D_MODEL=1024
|
||||
D_EMBED=1024
|
||||
N_HEAD=16
|
||||
D_HEAD=64
|
||||
D_INNER=4096
|
||||
|
||||
# Training
|
||||
TGT_LEN=384
|
||||
MEM_LEN=384
|
||||
TRAIN_BSZ=128
|
||||
VALID_BSZ=128
|
||||
|
||||
# Testing
|
||||
TEST_TGT_LEN=128
|
||||
TEST_MEM_LEN=1600
|
||||
TEST_CLAMP_LEN=1000
|
||||
TEST_BSZ=8
|
||||
|
||||
if [[ $1 == 'train_data' ]]; then
|
||||
python data_utils.py \
|
||||
--data_dir=${LOCAL_DIR}/ \
|
||||
--dataset=wt103 \
|
||||
--tgt_len=${TGT_LEN} \
|
||||
--per_host_train_bsz=${TRAIN_BSZ} \
|
||||
--per_host_valid_bsz=${VALID_BSZ} \
|
||||
--num_core_per_host=${NUM_CORE} \
|
||||
--num_passes=10 \
|
||||
--use_tpu=True \
|
||||
${@:2}
|
||||
|
||||
SRC_PATTERN=train.bsz-${TRAIN_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}*
|
||||
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/wt103-tfrecords/
|
||||
|
||||
SRC_PATTERN=valid.bsz-${VALID_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}*
|
||||
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/wt103-tfrecords/
|
||||
|
||||
elif [[ $1 == 'test_data' ]]; then
|
||||
python data_utils.py \
|
||||
--data_dir=${LOCAL_DIR}/ \
|
||||
--dataset=wt103 \
|
||||
--tgt_len=${TEST_TGT_LEN} \
|
||||
--per_host_test_bsz=${TEST_BSZ} \
|
||||
--num_core_per_host=${TEST_NUM_CORE} \
|
||||
--num_passes=1 \
|
||||
--use_tpu=True \
|
||||
${@:2}
|
||||
|
||||
SRC_PATTERN=test.bsz-${TEST_BSZ}.tlen-${TEST_TGT_LEN}.core-${TEST_NUM_CORE}*
|
||||
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/wt103-tfrecords/
|
||||
|
||||
elif [[ $1 == 'train' ]]; then
|
||||
echo 'Run training...'
|
||||
python train.py \
|
||||
--data_dir=${GSDATA}/wt103-tfrecords \
|
||||
--record_info_dir=${LOCAL_DIR}/tfrecords/ \
|
||||
--corpus_info_path=${LOCAL_DIR}/corpus-info.json \
|
||||
--model_dir=${GSEXP}/wt103 \
|
||||
--div_val=${DIV_VAL} \
|
||||
--untie_r=True \
|
||||
--proj_share_all_but_first=True \
|
||||
--proj_same_dim=True \
|
||||
--n_layer=${N_LAYER} \
|
||||
--d_model=${D_MODEL} \
|
||||
--d_embed=${D_EMBED} \
|
||||
--n_head=${N_HEAD} \
|
||||
--d_head=${D_HEAD} \
|
||||
--d_inner=${D_INNER} \
|
||||
--dropout=0.2 \
|
||||
--dropatt=0.2 \
|
||||
--init_std=0.005 \
|
||||
--learning_rate=0.00025 \
|
||||
--warmup_steps=16000 \
|
||||
--train_steps=4000000 \
|
||||
--tgt_len=${TGT_LEN} \
|
||||
--mem_len=${MEM_LEN} \
|
||||
--train_batch_size=${TRAIN_BSZ} \
|
||||
--num_hosts=${NUM_HOST} \
|
||||
--num_core_per_host=${NUM_CORE} \
|
||||
--iterations=1000 \
|
||||
--save_steps=10000 \
|
||||
--use_tpu=True \
|
||||
--do_eval=False \
|
||||
${@:2}
|
||||
|
||||
elif [[ $1 == 'eval' ]]; then
|
||||
echo 'Run evaluation...'
|
||||
python train.py \
|
||||
--data_dir=${GSDATA}/wt103-tfrecords \
|
||||
--record_info_dir=${LOCAL_DIR}/tfrecords/ \
|
||||
--corpus_info_path=${LOCAL_DIR}/corpus-info.json \
|
||||
--model_dir=${GSEXP}/wt103 \
|
||||
--div_val=${DIV_VAL} \
|
||||
--untie_r=True \
|
||||
--proj_share_all_but_first=True \
|
||||
--proj_same_dim=True \
|
||||
--n_layer=${N_LAYER} \
|
||||
--d_model=${D_MODEL} \
|
||||
--d_embed=${D_EMBED} \
|
||||
--n_head=${N_HEAD} \
|
||||
--d_head=${D_HEAD} \
|
||||
--d_inner=${D_INNER} \
|
||||
--tgt_len=${TEST_TGT_LEN} \
|
||||
--mem_len=${TEST_MEM_LEN} \
|
||||
--clamp_len=${TEST_CLAMP_LEN} \
|
||||
--same_length=True \
|
||||
--eval_batch_size=${TEST_BSZ} \
|
||||
--num_host=${TEST_NUM_HOST} \
|
||||
--num_core_per_host=${TEST_NUM_CORE} \
|
||||
--use_tpu=True \
|
||||
--do_train=False \
|
||||
--do_eval_only=True \
|
||||
--eval_split=test \
|
||||
${@:2}
|
||||
|
||||
else
|
||||
echo 'unknown argment 1'
|
||||
fi
|
||||
Reference in a new issue