This repository has been archived on 2025-12-23. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
2025ML-project-neural_compr.../transformer-xl/tf/scripts/lm1b_large_tpu.sh

136 lines
3.6 KiB
Bash

#!/bin/bash
# Path
LOCAL_DIR=../data/one-billion-words/
GSDATA=
GSEXP=
# TPU setting
NUM_HOST=32
NUM_CORE=16 # TPUv2 -> 8 | TPUv3 -> 16
TEST_NUM_HOST=1
TEST_NUM_CORE=8 # TPUv2 -> 8 | TPUv3 -> 16
# Model
DIV_VAL=4
N_LAYER=24
D_MODEL=1280
D_EMBED=1280
N_HEAD=16
D_HEAD=80
D_INNER=8192
# Training
TGT_LEN=32
MEM_LEN=32
TRAIN_BSZ=512
VALID_BSZ=512
TRAIN_BSZ_PER_HOST=$((TRAIN_BSZ / NUM_HOST))
VALID_BSZ_PER_HOST=$((VALID_BSZ / NUM_HOST))
# Testing
TEST_TGT_LEN=32
TEST_MEM_LEN=128
TEST_CLAMP_LEN=-1
TEST_BSZ=8
if [[ $1 == 'train_data' ]]; then
python data_utils.py \
--data_dir=${LOCAL_DIR}/ \
--dataset=lm1b \
--tgt_len=${TGT_LEN} \
--per_host_train_bsz=${TRAIN_BSZ_PER_HOST} \
--per_host_valid_bsz=${VALID_BSZ_PER_HOST} \
--num_core_per_host=${NUM_CORE} \
--num_passes=10 \
--use_tpu=True \
${@:2}
SRC_PATTERN=train.bsz-${TRAIN_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}*
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/lm1b-tfrecords/
SRC_PATTERN=valid.bsz-${VALID_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}*
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/lm1b-tfrecords/
elif [[ $1 == 'test_data' ]]; then
python data_utils.py \
--data_dir=${LOCAL_DIR}/ \
--dataset=lm1b \
--tgt_len=${TEST_TGT_LEN} \
--per_host_test_bsz=${TEST_BSZ} \
--num_core_per_host=${TEST_NUM_CORE} \
--num_passes=1 \
--use_tpu=True \
${@:2}
SRC_PATTERN=test.bsz-${TEST_BSZ}.tlen-${TEST_TGT_LEN}.core-${TEST_NUM_CORE}*
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/lm1b-tfrecords/
elif [[ $1 == 'train' ]]; then
echo 'Run training...'
python train.py \
--data_dir=${GSDATA}/lm1b-tfrecords \
--record_info_dir=${LOCAL_DIR}/tfrecords/ \
--corpus_info_path=${LOCAL_DIR}/corpus-info.json \
--model_dir=${GSEXP}/lm1b \
--div_val=${DIV_VAL} \
--untie_r=True \
--proj_share_all_but_first=False \
--proj_same_dim=False \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--dropout=0.05 \
--dropatt=0.05 \
--init_std=0.005 \
--learning_rate=0.0001 \
--warmup_steps=30000 \
--train_steps=1200000 \
--tgt_len=${TGT_LEN} \
--mem_len=${MEM_LEN} \
--train_batch_size=${TRAIN_BSZ} \
--num_hosts=${NUM_HOST} \
--num_core_per_host=${NUM_CORE} \
--iterations=1000 \
--save_steps=10000 \
--use_tpu=True \
--do_eval=False \
${@:2}
elif [[ $1 == 'eval' ]]; then
echo 'Run evaluation...'
python train.py \
--data_dir=${GSDATA}/lm1b-tfrecords \
--record_info_dir=${LOCAL_DIR}/tfrecords/ \
--corpus_info_path=${LOCAL_DIR}/corpus-info.json \
--model_dir=${GSEXP}/lm1b \
--div_val=${DIV_VAL} \
--untie_r=True \
--proj_share_all_but_first=False \
--proj_same_dim=False \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--tgt_len=${TEST_TGT_LEN} \
--mem_len=${TEST_MEM_LEN} \
--clamp_len=${TEST_CLAMP_LEN} \
--same_length=True \
--eval_batch_size=${TEST_BSZ} \
--num_host=${TEST_NUM_HOST} \
--num_core_per_host=${TEST_NUM_CORE} \
--use_tpu=True \
--do_train=False \
--do_eval_only=True \
--eval_split=test \
${@:2}
else
echo 'unknown argment 1'
fi