chore(transformer-xl): Initial commit

This commit is contained in:
Tibo De Peuter 2025-11-07 12:58:13 +01:00
parent ef4684ef39
commit 10512876f2
Signed by: tdpeuter
GPG key ID: 38297DE43F75FFE2
46 changed files with 10547 additions and 0 deletions

131
transformer-xl/tf/README.md Normal file
View file

@ -0,0 +1,131 @@
## Introduction
This directory contains our TF implementation of Transformer-XL. Note that our state-of-the-art results reported in the paper were obtained by training the model on a large-scale TPU cluster, and our gpu codebase currently does not support distributed training. Here we provide two sets of hyperparameters and scripts:
- `*large_tpu.sh` are for the SoTA setting on TPUs. These are exactly the commands we used to obtained our best results.
- `*base_gpu.sh` are for the base models which can be run on a few GPUs.
## Prerequisite
- Python 2.7
- Tensorflow [1.12.0](https://github.com/tensorflow/tensorflow/releases/tag/v1.12.0)
## Obtain and evaluate pretrained SoTA models
#### 1. Download preprocessed data (vocab) & pretrained models
(a) Set your own `DATA_ROOT` in `sota/download.sh` (default to `./`), which will be the root diretory of downloaded model.
(b) Then, download the model & data by `bash sota/download.sh`. After downloading, the expected directory structure is as follows
```markdown
pretrained_xl
tf_enwik8/
data/
cache.pkl
corpus-info.json
model/
checkpoint
model.ckpt*
tf_wt103/
...
...
```
**Note**: we include preprocessed data in the download files to make sure the **same vocabulary** is used. Please see the code `tf/data_utils.py` to understand the data structure.
#### 2. Run evaluation scripts to replicate SoTA results on GPUs
- **enwik8**: modify the script `sota/enwik8.sh` accordingly (see below)
- set `DATA_ROOT` to the same folder used in the download step (default to `./`)
- set `TEST_NUM_CORE ` (number of GPUs to use): we recommend 2 GPUs => about 60 mins
- run the script: `bash sota/enwik8.sh`
- **lm1b**: modify the script `sota/lm1b.sh` accordingly (see below)
- set `DATA_ROOT` to the same folder used in the download step (default to `./`)
- set `TEST_NUM_CORE ` (number of GPUs to use): we recommend 1 GPUs => less than 5 mins
- run the script: `bash sota/lm1b.sh`
- **wt103**: modify the script `sota/wt103.sh` accordingly (see below)
- set `DATA_ROOT` to the same folder used in the download step (default to `./`)
- set `TEST_NUM_CORE ` (number of GPUs to use): we recommend 1 GPUs => less than 5 mins
- run the script: `bash sota/wt103.sh`
- **text8**: modify the script `sota/text8.sh` accordingly (see below)
- set `DATA_ROOT` to the same folder used in the download step (default to `./`)
- set `TEST_NUM_CORE ` (number of GPUs to use): we recommend 2 GPUs => about 60 mins
- run the script: `bash sota/text8.sh`
#### 3. Resources Needed for SoTA Model Training
We used 32, 32, 64, and 512 TPU cores for training our best models on enwik8, text8, wt103, and lm1b respectively. The training time for each model ranges from 2 to 5 days.
## Train "Transformer-XL" from scratch with GPUs or TPUs
### 1. Download raw data
`bash getdata.sh`
### 2. Preprocess, training and evaluation
For `dataset` in `[enwik8, lm1b, wt103, text8]`:
- check out `scripts/dataset_base_gpu.sh` for GPU training and evaluation
- check out `scripts/dataset_large_tpu.sh` for TPU training and evaluation
#### (1) Preprocess raw data and create tfrecords
**NOTE**: The preprocessing for GPU and TPU are different. So, you have to run them separately.
GPU:
- create training and validation data: `bash scripts/dataset_bas_gpu.sh train_data`
- create test data: `bash scripts/dataset_base_gpu.sh test_data`
TPU:
- Set the Google storage URL in `scripts/dataset_large_tpu.sh`:
- `GSDATA`: data URL
- `GSEXP`: experiment URL
- create training and validation data: `bash scripts/dataset_large_tpu.sh train_data`
- create test data: `bash scripts/dataset_large_tpu.sh test_data`
#### (2) Run training
Base models on GPUs:
- Modify the configurations in `scripts/dataset_base_gpu.sh` according to your needs.
- `bash scripts/dataset_base_gpu.sh train`
- If enough resources are available, increasing the model sizes (e.g., `N_LAYER`, `D_MODEL`, `D_EMBED`, `D_HEAD`, `D_INNER`) so that they are closer to the values defined in `scripts/dataset_large_tpu.sh`. Likewise, when resources are limited, decrease the model sizes. It is recommended to ensure that `D_MODEL == D_EMBED` and `D_MODEL == N_HEAD x D_HEAD`. When the model sizes increase, remember to increase `warmup_steps` accordingly to alleviate optimization difficulties.
- Adjust the `NUM_CORE` parameter to reflect the number of GPUs to use.
Larger models on TPUs:
- Modify the configurations in `scripts/dataset_large_tpu.sh` according to your needs.
- `bash scripts/dataset_large_tpu.sh train`
#### (3) Run evaluation
Base models on GPUs:
- `bash scripts/dataset_base_gpu.sh eval --eval_ckpt_path PATH_TO_CKPT`
Larger models on TPUs:
- `bash scripts/dataset_base_tpu.sh eval --eval_ckpt_path PATH_TO_CKPT`

View file

@ -0,0 +1,118 @@
# coding=utf-8
# Copyright 2018 The Tensor2Tensor Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Script to average values of variables in a list of checkpoint files."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
import six
from six.moves import zip # pylint: disable=redefined-builtin
import tensorflow as tf
flags = tf.flags
FLAGS = flags.FLAGS
flags.DEFINE_string("checkpoints", "",
"Comma-separated list of checkpoints to average.")
flags.DEFINE_integer("num_last_checkpoints", 0,
"Averages the last N saved checkpoints."
" If the checkpoints flag is set, this is ignored.")
flags.DEFINE_string("prefix", "",
"Prefix (e.g., directory) to append to each checkpoint.")
flags.DEFINE_string("output_path", "/tmp/averaged.ckpt",
"Path to output the averaged checkpoint to.")
def checkpoint_exists(path):
return (tf.gfile.Exists(path) or tf.gfile.Exists(path + ".meta") or
tf.gfile.Exists(path + ".index"))
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
if FLAGS.checkpoints:
# Get the checkpoints list from flags and run some basic checks.
checkpoints = [c.strip() for c in FLAGS.checkpoints.split(",")]
checkpoints = [c for c in checkpoints if c]
if not checkpoints:
raise ValueError("No checkpoints provided for averaging.")
if FLAGS.prefix:
checkpoints = [FLAGS.prefix + c for c in checkpoints]
else:
assert FLAGS.num_last_checkpoints >= 1, "Must average at least one model"
assert FLAGS.prefix, ("Prefix must be provided when averaging last"
" N checkpoints")
checkpoint_state = tf.train.get_checkpoint_state(
os.path.dirname(FLAGS.prefix))
# Checkpoints are ordered from oldest to newest.
checkpoints = checkpoint_state.all_model_checkpoint_paths[
-FLAGS.num_last_checkpoints:]
checkpoints = [c for c in checkpoints if checkpoint_exists(c)]
if not checkpoints:
if FLAGS.checkpoints:
raise ValueError(
"None of the provided checkpoints exist. %s" % FLAGS.checkpoints)
else:
raise ValueError("Could not find checkpoints at %s" %
os.path.dirname(FLAGS.prefix))
# Read variables from all checkpoints and average them.
tf.logging.info("Reading variables and averaging checkpoints:")
for c in checkpoints:
tf.logging.info("%s ", c)
var_list = tf.contrib.framework.list_variables(checkpoints[0])
var_values, var_dtypes = {}, {}
for (name, shape) in var_list:
if not name.startswith("global_step"):
var_values[name] = np.zeros(shape)
for checkpoint in checkpoints:
reader = tf.contrib.framework.load_checkpoint(checkpoint)
for name in var_values:
tensor = reader.get_tensor(name)
var_dtypes[name] = tensor.dtype
var_values[name] += tensor
tf.logging.info("Read from checkpoint %s", checkpoint)
for name in var_values: # Average.
var_values[name] /= len(checkpoints)
with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):
tf_vars = [
tf.get_variable(v, shape=var_values[v].shape, dtype=var_dtypes[v])
for v in var_values
]
placeholders = [tf.placeholder(v.dtype, shape=v.shape) for v in tf_vars]
assign_ops = [tf.assign(v, p) for (v, p) in zip(tf_vars, placeholders)]
global_step = tf.Variable(
0, name="global_step", trainable=False, dtype=tf.int64)
saver = tf.train.Saver(tf.all_variables())
# Build a model consisting only of variables, set them to the average values.
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for p, assign_op, (name, value) in zip(placeholders, assign_ops,
six.iteritems(var_values)):
sess.run(assign_op, {p: value})
# Use the built saver to save the averaged checkpoint.
saver.save(sess, FLAGS.output_path, global_step=global_step)
tf.logging.info("Averaged checkpoints saved in %s", FLAGS.output_path)
if __name__ == "__main__":
tf.app.run()

View file

@ -0,0 +1,586 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import os
from functools import partial
from collections import Counter, OrderedDict
import pickle
import json
import multiprocessing as mp
import numpy as np
from absl import flags
import tensorflow as tf
from vocabulary import Vocab
from tensorflow.gfile import Exists as exists
from tensorflow.gfile import MakeDirs as makedirs
from tensorflow.gfile import Glob as glob
def _preprocess(shard, train, vocab, save_dir, cutoffs, bin_sizes, bsz, tgt_len,
num_core_per_host, use_tpu, num_shuffle):
file_names = []
num_batch = 0
path = train[shard]
data_shard = vocab.encode_file(path, ordered=False, add_double_eos=True)
for shuffle in range(num_shuffle):
basename = "train-{:03d}-{:02d}".format(shard, shuffle)
print("Processing shard {} shuffle {}".format(shard, shuffle))
np.random.shuffle(data_shard)
file_name, num_batch_shuffle = create_ordered_tfrecords(
save_dir, basename, np.concatenate(data_shard), bsz, tgt_len,
num_core_per_host, cutoffs, bin_sizes, use_tpu=use_tpu)
file_names.append(file_name)
num_batch += num_batch_shuffle
return file_names, num_batch
class Corpus(object):
def __init__(self, path, dataset, *args, **kwargs):
self.dataset = dataset
self.vocab = Vocab(*args, **kwargs)
if self.dataset in ["ptb", "wt2", "enwik8", "text8"]:
self.vocab.count_file(os.path.join(path, "train.txt"))
self.vocab.count_file(os.path.join(path, "valid.txt"))
self.vocab.count_file(os.path.join(path, "test.txt"))
elif self.dataset == "wt103":
self.vocab.count_file(os.path.join(path, "train.txt"))
elif self.dataset == "lm1b":
train_path_pattern = os.path.join(
path, "1-billion-word-language-modeling-benchmark-r13output",
"training-monolingual.tokenized.shuffled", "news.en-*")
train_paths = glob(train_path_pattern)
# the vocab will load from file when build_vocab() is called
# for train_path in sorted(train_paths):
# self.vocab.count_file(train_path, verbose=True)
self.vocab.build_vocab()
if self.dataset in ["ptb", "wt2", "wt103"]:
self.train = self.vocab.encode_file(
os.path.join(path, "train.txt"), ordered=True)
self.valid = self.vocab.encode_file(
os.path.join(path, "valid.txt"), ordered=True)
self.test = self.vocab.encode_file(
os.path.join(path, "test.txt"), ordered=True)
elif self.dataset in ["enwik8", "text8"]:
self.train = self.vocab.encode_file(
os.path.join(path, "train.txt"), ordered=True, add_eos=False)
self.valid = self.vocab.encode_file(
os.path.join(path, "valid.txt"), ordered=True, add_eos=False)
self.test = self.vocab.encode_file(
os.path.join(path, "test.txt"), ordered=True, add_eos=False)
elif self.dataset == "lm1b":
self.train = train_paths
valid_path = os.path.join(path, "valid.txt")
test_path = valid_path
self.valid = self.vocab.encode_file(
valid_path, ordered=True, add_double_eos=True)
self.test = self.vocab.encode_file(
test_path, ordered=True, add_double_eos=True)
if self.dataset == "wt103":
self.cutoffs = [0, 20000, 40000, 200000] + [len(self.vocab)]
elif self.dataset == "lm1b":
self.cutoffs = [0, 60000, 100000, 640000] + [len(self.vocab)]
else:
self.cutoffs = []
def convert_to_tfrecords(self, split, save_dir, bsz, tgt_len,
num_core_per_host, **kwargs):
FLAGS = kwargs.get('FLAGS')
file_names = []
use_tpu = FLAGS.use_tpu and not (split == "test" and num_core_per_host == 1)
if use_tpu:
record_name = "record_info-{}.bsz-{}.tlen-{}.core-{}.json".format(
split, bsz, tgt_len, num_core_per_host)
else:
record_name = "record_info-{}.bsz-{}.tlen-{}.json".format(
split, bsz, tgt_len)
record_info_path = os.path.join(save_dir, record_name)
if self.dataset in ["ptb", "wt2", "wt103", "enwik8", "text8"]:
data = getattr(self, split)
bin_sizes = get_bin_sizes(
data, bsz // num_core_per_host, tgt_len, self.cutoffs)
file_name, num_batch = create_ordered_tfrecords(
save_dir, split, data, bsz, tgt_len, num_core_per_host,
self.cutoffs, bin_sizes,
num_passes=FLAGS.num_passes if split == 'train' and use_tpu else 1,
use_tpu=use_tpu)
file_names.append(file_name)
elif self.dataset == "lm1b":
bin_sizes = get_bin_sizes(
self.valid, bsz // num_core_per_host, tgt_len, self.cutoffs)
if split == "train":
np.random.seed(123456)
num_batch = 0
if FLAGS.num_procs > 1:
_preprocess_wrapper = partial(_preprocess,
train=self.train, vocab=self.vocab, save_dir=save_dir,
cutoffs=self.cutoffs, bin_sizes=bin_sizes, bsz=bsz,
tgt_len=tgt_len, num_core_per_host=num_core_per_host,
use_tpu=use_tpu, num_shuffle=FLAGS.num_shuffle)
pool = mp.Pool(processes=FLAGS.num_procs)
results = pool.map(_preprocess_wrapper, range(len(self.train)))
for res in results:
file_names.extend(res[0])
num_batch += res[1]
else:
for shard, path in enumerate(self.train):
data_shard = self.vocab.encode_file(path, ordered=False,
add_double_eos=True)
num_shuffle = FLAGS.num_shuffle
for shuffle in range(num_shuffle):
print("Processing shard {} shuffle {}".format(shard, shuffle))
basename = "train-{:03d}-{:02d}".format(shard, shuffle)
np.random.shuffle(data_shard)
file_name, num_batch_ = create_ordered_tfrecords(
save_dir, basename, np.concatenate(data_shard), bsz, tgt_len,
num_core_per_host,
self.cutoffs, bin_sizes, use_tpu=use_tpu)
file_names.append(file_name)
num_batch += num_batch_
else:
file_name, num_batch = create_ordered_tfrecords(
save_dir, split, getattr(self, split), bsz, tgt_len,
num_core_per_host,
self.cutoffs, bin_sizes, use_tpu=use_tpu)
file_names.append(file_name)
with open(record_info_path, "w") as fp:
record_info = {
"filenames": file_names,
"bin_sizes": bin_sizes,
"num_batch": num_batch
}
json.dump(record_info, fp)
def get_bin_sizes(data, batch_size, tgt_len, cutoffs, std_mult=[2.5, 2.5, 2.5]):
"""
Note: the `batch_size` here should be per-core batch size
"""
bin_sizes = []
def _nearest_to_eight(x): # so that it's faster on TPUs
y = x - x % 8
return y + 8 if x % 8 >= 4 else max(8, y)
if cutoffs:
num_batch = len(data) // batch_size // tgt_len
data = data[:batch_size * num_batch * tgt_len]
data = data.reshape(batch_size, num_batch, tgt_len)
tot = batch_size * tgt_len
for b, (left, right) in enumerate(zip(cutoffs[1:-1], cutoffs[2:])):
mask = (data >= left) * (data < right)
percents = mask.astype(np.float64).sum(2).sum(0) / tot
mean = np.mean(percents)
std = np.std(percents)
bin_size = int(math.ceil(tgt_len * batch_size * (mean + std_mult[b] * std)))
bin_size = _nearest_to_eight(bin_size)
bin_sizes.append(bin_size)
return bin_sizes
def _int64_feature(values):
return tf.train.Feature(int64_list=tf.train.Int64List(value=values))
def _float_feature(values):
return tf.train.Feature(float_list=tf.train.FloatList(value=values))
def batchify(data, batch_size, num_passes):
"""
if use_tpu = True: num_passes > 1
Since TPU training requires entire [bsz x tgt_len] chunks, it can discard
as many as `bsz * tgt_len` tokens in training. When `bsz` and `tgt_len` are
both large, as in the case of TPU training for Transformer-XL, the problem
may lead to detectable performance drop.
Here, we use multiple randomly shifted copies to deal with this problem.
"""
if num_passes > 1:
data_len = len(data)
double_data = np.concatenate([data, data])
data_list = []
for i in range(num_passes):
start = np.random.randint(0, data_len)
data_list.append(double_data[start:start+data_len])
data = np.concatenate(data_list)
num_step = len(data) // batch_size
data = data[:batch_size * num_step]
data = data.reshape(batch_size, num_step)
return data
def create_ordered_tfrecords(save_dir, basename, data, batch_size, tgt_len,
num_core_per_host, cutoffs=[], bin_sizes=[],
num_passes=1, use_tpu=False):
if use_tpu:
file_name = "{}.bsz-{}.tlen-{}.core-{}.tfrecords".format(
basename, batch_size, tgt_len, num_core_per_host)
else:
file_name = "{}.bsz-{}.tlen-{}.tfrecords".format(
basename, batch_size, tgt_len)
save_path = os.path.join(save_dir, file_name)
record_writer = tf.python_io.TFRecordWriter(save_path)
batched_data = batchify(data, batch_size, num_passes)
num_batch = 0
# for t in range(0, batched_data.shape[1] - tgt_len - 1, tgt_len):
for t in range(0, batched_data.shape[1] - 1, tgt_len):
cur_tgt_len = min(batched_data.shape[1] - 1 - t, tgt_len)
# drop the remainder if use tpu
if use_tpu and cur_tgt_len < tgt_len:
break
if num_batch % 500 == 0:
print(" processing batch {}".format(num_batch))
for idx in range(batch_size):
inputs = batched_data[idx, t:t + cur_tgt_len]
labels = batched_data[idx, t + 1:t + cur_tgt_len + 1]
# features dict
feature = {
"inputs": _int64_feature(inputs),
"labels": _int64_feature(labels),
}
if len(cutoffs) > 0 and use_tpu:
# validate `bin_sizes` and `cutoffs`
assert len(cutoffs) - len(bin_sizes) == 2, \
"len(cutoffs) - len(bin_sizes) != 2"
# mask for bin 0
left, right = cutoffs[:2]
inp_mask = ((inputs >= left) * (inputs < right)).astype(np.float32)
tgt_mask = ((labels >= left) * (labels < right)).astype(np.float32)
feature["inp_mask"] = _float_feature(inp_mask)
feature["tgt_mask"] = _float_feature(tgt_mask)
# refresh `inp_cnts` and `tgt_cnts` for each TPU core
if idx % (batch_size // num_core_per_host) == 0:
inp_cnts = [0] * len(bin_sizes)
tgt_cnts = [0] * len(bin_sizes)
head_labels = np.copy(labels)
inp_pos_per_bin, tgt_pos_per_bin = [], []
for b, (left, right) in enumerate(zip(cutoffs[1:-1], cutoffs[2:])):
inp_pos = np.where((inputs >= left) * (inputs < right))[0]
tgt_pos = np.where((labels >= left) * (labels < right))[0]
inp_pos_per_bin.append(inp_pos)
tgt_pos_per_bin.append(tgt_pos)
head_labels[tgt_pos] = cutoffs[1] + b
feature["head_labels"] = _int64_feature(head_labels)
# permutation feature
def _add_perm_feature(feature, pos_per_bin, cnts, prefix):
for b, pos in enumerate(pos_per_bin):
idx_tuple = []
for p in pos:
if cnts[b] < bin_sizes[b]:
idx_tuple.append([p, cnts[b]])
cnts[b] += 1
else:
break
n_tup = len(idx_tuple)
tup = np.array(idx_tuple).reshape(n_tup * 2)
feature["{}_cnt_{}".format(prefix, b)] = _int64_feature([n_tup])
feature["{}_tup_{}".format(prefix, b)] = _int64_feature(tup)
_add_perm_feature(feature, inp_pos_per_bin, inp_cnts, "inp")
_add_perm_feature(feature, tgt_pos_per_bin, tgt_cnts, "tgt")
example = tf.train.Example(features=tf.train.Features(feature=feature))
record_writer.write(example.SerializeToString())
num_batch += 1
record_writer.close()
print("Done writing {}. batches: {}".format(file_name, num_batch))
return file_name, num_batch
def get_lm_corpus(data_dir, dataset):
fn = os.path.join(data_dir, "cache.pkl")
if exists(fn):
print("Loading cached dataset...")
with open(fn, "rb") as fp:
corpus = pickle.load(fp)
else:
print("Producing dataset...")
kwargs = {}
if dataset in ["wt103", "wt2"]:
kwargs["special"] = ["<eos>"]
kwargs["lower_case"] = False
elif dataset == "ptb":
kwargs["special"] = ["<eos>"]
kwargs["lower_case"] = True
elif dataset == "lm1b":
kwargs["special"] = []
kwargs["lower_case"] = False
kwargs["vocab_file"] = os.path.join(data_dir, "1b_word_vocab.txt")
elif dataset in ["enwik8", "text8"]:
pass
corpus = Corpus(data_dir, dataset, **kwargs)
print("Saving dataset...")
with open(fn, "wb") as fp:
pickle.dump(corpus, fp, protocol=2)
corpus_info = {
"vocab_size" : len(corpus.vocab),
"cutoffs" : corpus.cutoffs,
"dataset" : corpus.dataset
}
with open(os.path.join(data_dir, "corpus-info.json"), "w") as fp:
json.dump(corpus_info, fp)
return corpus
def main(unused_argv):
del unused_argv # Unused
corpus = get_lm_corpus(FLAGS.data_dir, FLAGS.dataset)
save_dir = os.path.join(FLAGS.data_dir, "tfrecords")
if not exists(save_dir):
makedirs(save_dir)
# test mode
if FLAGS.per_host_test_bsz > 0:
corpus.convert_to_tfrecords("test", save_dir, FLAGS.per_host_test_bsz,
FLAGS.tgt_len, FLAGS.num_core_per_host,
FLAGS=FLAGS)
return
for split, batch_size in zip(
["train", "valid"],
[FLAGS.per_host_train_bsz, FLAGS.per_host_valid_bsz]):
if batch_size <= 0: continue
print("Converting {} set...".format(split))
corpus.convert_to_tfrecords(split, save_dir, batch_size, FLAGS.tgt_len,
FLAGS.num_core_per_host, FLAGS=FLAGS)
def load_record_info(record_info_dir, split, per_host_bsz, tgt_len,
num_core_per_host, use_tpu):
if use_tpu:
record_name = "record_info-{}.bsz-{}.tlen-{}.core-{}.json".format(
split, per_host_bsz, tgt_len, num_core_per_host)
else:
record_name = "record_info-{}.bsz-{}.tlen-{}.json".format(
split, per_host_bsz, tgt_len)
record_info_path = os.path.join(record_info_dir, record_name)
with open(record_info_path, "r") as fp:
record_info = json.load(fp)
return record_info
def get_input_fn(record_info_dir, split, per_host_bsz, tgt_len,
num_core_per_host, num_hosts=1, use_tpu=False):
"""Creates input function."""
record_info = load_record_info(record_info_dir, split, per_host_bsz, tgt_len,
num_core_per_host, use_tpu=use_tpu)
file_names = record_info["filenames"]
bin_sizes = record_info["bin_sizes"]
num_batch = record_info["num_batch"]
tf.logging.info("[{}] File names {}".format(split, file_names))
def input_fn(params):
# per-core batch size
per_core_bsz = params["batch_size"]
# data_dir could be a remote path, e.g., a google storage url
data_dir = params["data_dir"]
def parser(record):
# preprocess "inp_perm" and "tgt_perm"
def _process_perm_feature(example, prefix):
for b in range(len(bin_sizes)):
cnt = example.pop("{}_cnt_{}".format(prefix, b))[0]
tup = example.pop("{}_tup_{}".format(prefix, b))
tup = tf.reshape(
tf.sparse_tensor_to_dense(tup),
shape=[cnt, 2])
# tf.float32
perm = tf.sparse_to_dense(
sparse_indices=tup,
output_shape=[tgt_len, bin_sizes[b]],
sparse_values=1.0,
default_value=0.0)
example["{}_perm_{}".format(prefix, b)] = perm
# whether allow the last batch with a potentially shorter length
if use_tpu:
record_spec = {
"inputs": tf.FixedLenFeature([tgt_len], tf.int64),
"labels": tf.FixedLenFeature([tgt_len], tf.int64),
}
else:
record_spec = {
"inputs": tf.VarLenFeature(tf.int64),
"labels": tf.VarLenFeature(tf.int64),
}
# permutation related features
if bin_sizes and use_tpu:
# tf.float32
record_spec["inp_mask"] = tf.FixedLenFeature([tgt_len], tf.float32)
record_spec["tgt_mask"] = tf.FixedLenFeature([tgt_len], tf.float32)
record_spec["head_labels"] = tf.FixedLenFeature([tgt_len], tf.int64)
for b in range(len(bin_sizes)):
record_spec["inp_cnt_{}".format(b)] = tf.FixedLenFeature([1], tf.int64)
record_spec["inp_tup_{}".format(b)] = tf.VarLenFeature(tf.int64)
record_spec["tgt_cnt_{}".format(b)] = tf.FixedLenFeature([1], tf.int64)
record_spec["tgt_tup_{}".format(b)] = tf.VarLenFeature(tf.int64)
# retrieve serialized example
example = tf.parse_single_example(
serialized=record,
features=record_spec)
# transform permutation tuples to permutation matrices
if bin_sizes and use_tpu:
_process_perm_feature(example, "inp")
_process_perm_feature(example, "tgt")
# cast int64 into int32
# cast sparse to dense
for key in list(example.keys()):
val = example[key]
if tf.keras.backend.is_sparse(val):
val = tf.sparse.to_dense(val)
if val.dtype == tf.int64:
val = tf.to_int32(val)
example[key] = val
if use_tpu:
return example
else:
return example["inputs"], example["labels"]
file_paths = []
for file_name in file_names:
file_path = os.path.join(data_dir, file_name)
file_paths.append(file_path)
if split == "train":
dataset = tf.data.Dataset.from_tensor_slices(file_paths)
if len(file_paths) > 1:
dataset = dataset.shuffle(len(file_paths)).repeat()
dataset = tf.data.TFRecordDataset(dataset)
elif num_hosts > 1:
host_id = params["context"].current_host
# drop the remaining batches
num_batch_per_host = num_batch // num_hosts
my_start_sample_id = (host_id * num_batch_per_host * num_core_per_host *
per_core_bsz)
my_sample_num = num_batch_per_host * num_core_per_host * per_core_bsz
dataset = tf.data.TFRecordDataset(dataset).skip(
my_start_sample_id).take(my_sample_num)
else:
dataset = tf.data.TFRecordDataset(dataset)
dataset = dataset.map(parser).cache().repeat()
dataset = dataset.batch(per_core_bsz, drop_remainder=True)
dataset = dataset.prefetch(num_core_per_host * per_core_bsz)
else:
# do not shuffle, repeat or cache in evaluation
dataset = tf.data.Dataset.from_tensor_slices(file_paths)
dataset = tf.data.TFRecordDataset(dataset)
dataset = dataset.map(parser)
dataset = dataset.batch(per_core_bsz, drop_remainder=True)
return dataset
if split == "train" and num_hosts > 1:
record_info["num_batch"] = num_batch // num_hosts
return input_fn, record_info
def get_corpus_info(corpus_info_path):
with open(corpus_info_path, "r") as fp:
corpus_info = json.load(fp)
return corpus_info
if __name__ == "__main__":
FLAGS = flags.FLAGS
flags.DEFINE_string("data_dir", None,
help="Location of the data corpus")
flags.DEFINE_enum("dataset", "wt103",
["ptb", "wt2", "wt103", "lm1b", "enwik8", "text8"],
help="Dataset name.")
flags.DEFINE_integer("per_host_train_bsz", 60,
help="train batch size each host")
flags.DEFINE_integer("per_host_valid_bsz", 60,
help="valid batch size each host")
flags.DEFINE_integer("per_host_test_bsz", 0,
help="If > 0, enter test mode and process test set only."
"Otherwise, process train and dev sets only.")
flags.DEFINE_integer("tgt_len", 70,
help="number of tokens to predict")
flags.DEFINE_integer("max_batch", -1,
help="run in debug mode")
flags.DEFINE_integer("num_core_per_host", 8,
help="8 for TPU v2.")
flags.DEFINE_bool("debug", default=False,
help="Process only the first batch without shuffle for lm1b.")
flags.DEFINE_integer("num_procs", 1,
help="number of processes")
flags.DEFINE_integer("num_passes", 10,
help="number of passes when use_tpu=True")
flags.DEFINE_integer("num_shuffle", 4,
help="number of shuffles for lm1b")
flags.DEFINE_bool("use_tpu", True,
help="use tpu")
tf.app.run(main)

View file

@ -0,0 +1,65 @@
import os
import tensorflow as tf
def assign_to_gpu(gpu=0, ps_dev="/device:CPU:0"):
def _assign(op):
node_def = op if isinstance(op, tf.NodeDef) else op.node_def
if node_def.op == "Variable":
return ps_dev
else:
return "/gpu:%d" % gpu
return _assign
def average_grads_and_vars(tower_grads_and_vars):
def average_dense(grad_and_vars):
if len(grad_and_vars) == 1:
return grad_and_vars[0][0]
grad = grad_and_vars[0][0]
for g, _ in grad_and_vars[1:]:
grad += g
return grad / len(grad_and_vars)
def average_sparse(grad_and_vars):
if len(grad_and_vars) == 1:
return grad_and_vars[0][0]
indices = []
values = []
for g, _ in grad_and_vars:
indices += [g.indices]
values += [g.values]
indices = tf.concat(indices, 0)
values = tf.concat(values, 0) / len(grad_and_vars)
return tf.IndexedSlices(values, indices, grad_and_vars[0][0].dense_shape)
average_grads_and_vars = []
for grad_and_vars in zip(*tower_grads_and_vars):
if grad_and_vars[0][0] is None:
grad = None
elif isinstance(grad_and_vars[0][0], tf.IndexedSlices):
grad = average_sparse(grad_and_vars)
else:
grad = average_dense(grad_and_vars)
# Keep in mind that the Variables are redundant because they are shared
# across towers. So .. we will just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads_and_vars.append(grad_and_var)
return average_grads_and_vars
def load_from_checkpoint(saver, logdir):
sess = tf.get_default_session()
ckpt = tf.train.get_checkpoint_state(logdir)
if ckpt and ckpt.model_checkpoint_path:
if os.path.isabs(ckpt.model_checkpoint_path):
# Restores from checkpoint with absolute path.
saver.restore(sess, ckpt.model_checkpoint_path)
else:
# Restores from checkpoint with relative path.
saver.restore(sess, os.path.join(logdir, ckpt.model_checkpoint_path))
return True
return False

546
transformer-xl/tf/model.py Normal file
View file

@ -0,0 +1,546 @@
import tensorflow as tf
def positional_embedding(pos_seq, inv_freq, bsz=None):
sinusoid_inp = tf.einsum('i,j->ij', pos_seq, inv_freq)
pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], -1)
if bsz is not None:
return tf.tile(pos_emb[:, None, :], [1, bsz, 1])
else:
return pos_emb[:, None, :]
def positionwise_FF(inp, d_model, d_inner, dropout, kernel_initializer,
scope='ff', is_training=True):
output = inp
with tf.variable_scope(scope):
output = tf.layers.dense(inp, d_inner, activation=tf.nn.relu,
kernel_initializer=kernel_initializer,
name='layer_1')
output = tf.layers.dropout(output, dropout, training=is_training,
name='drop_1')
output = tf.layers.dense(output, d_model,
kernel_initializer=kernel_initializer,
name='layer_2')
output = tf.layers.dropout(output, dropout, training=is_training,
name='drop_2')
output = tf.contrib.layers.layer_norm(output + inp, begin_norm_axis=-1)
return output
def rel_shift(x):
x_size = tf.shape(x)
x = tf.pad(x, [[0, 0], [1, 0], [0, 0], [0, 0]])
x = tf.reshape(x, [x_size[1] + 1, x_size[0], x_size[2], x_size[3]])
x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1])
x = tf.reshape(x, x_size)
return x
def rel_multihead_attn(w, r, r_w_bias, r_r_bias, attn_mask, mems, d_model,
n_head, d_head, dropout, dropatt, is_training,
kernel_initializer, scope='rel_attn'):
scale = 1 / (d_head ** 0.5)
with tf.variable_scope(scope):
qlen = tf.shape(w)[0]
rlen = tf.shape(r)[0]
bsz = tf.shape(w)[1]
cat = tf.concat([mems, w],
0) if mems is not None and mems.shape.ndims > 1 else w
w_heads = tf.layers.dense(cat, 3 * n_head * d_head, use_bias=False,
kernel_initializer=kernel_initializer, name='qkv')
r_head_k = tf.layers.dense(r, n_head * d_head, use_bias=False,
kernel_initializer=kernel_initializer, name='r')
w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, -1)
w_head_q = w_head_q[-qlen:]
klen = tf.shape(w_head_k)[0]
w_head_q = tf.reshape(w_head_q, [qlen, bsz, n_head, d_head])
w_head_k = tf.reshape(w_head_k, [klen, bsz, n_head, d_head])
w_head_v = tf.reshape(w_head_v, [klen, bsz, n_head, d_head])
r_head_k = tf.reshape(r_head_k, [rlen, n_head, d_head])
rw_head_q = w_head_q + r_w_bias
rr_head_q = w_head_q + r_r_bias
AC = tf.einsum('ibnd,jbnd->ijbn', rw_head_q, w_head_k)
BD = tf.einsum('ibnd,jnd->ijbn', rr_head_q, r_head_k)
BD = rel_shift(BD)
attn_score = (AC + BD) * scale
attn_mask_t = attn_mask[:, :, None, None]
attn_score = attn_score * (1 - attn_mask_t) - 1e30 * attn_mask_t
attn_prob = tf.nn.softmax(attn_score, 1)
attn_prob = tf.layers.dropout(attn_prob, dropatt, training=is_training)
attn_vec = tf.einsum('ijbn,jbnd->ibnd', attn_prob, w_head_v)
size_t = tf.shape(attn_vec)
attn_vec = tf.reshape(attn_vec, [size_t[0], size_t[1], n_head * d_head])
attn_out = tf.layers.dense(attn_vec, d_model, use_bias=False,
kernel_initializer=kernel_initializer, name='o')
attn_out = tf.layers.dropout(attn_out, dropout, training=is_training)
output = tf.contrib.layers.layer_norm(attn_out + w, begin_norm_axis=-1)
return output
def embedding_lookup(lookup_table, x, use_tpu=True):
if use_tpu:
n_token = tf.shape(lookup_table)[0]
one_hot_idx = tf.one_hot(x, n_token)
if one_hot_idx.shape.ndims == 2:
return tf.einsum('nd,in->id', lookup_table, one_hot_idx)
else:
return tf.einsum('nd,ibn->ibd', lookup_table, one_hot_idx)
else:
return tf.nn.embedding_lookup(lookup_table, x)
def mask_adaptive_embedding_lookup(x, n_token, d_embed, d_proj, cutoffs, initializer,
proj_initializer, div_val=1,
proj_same_dim=True,
scope='adaptive_embed', **kwargs):
emb_scale = d_proj ** 0.5
with tf.variable_scope(scope):
if div_val == 1:
lookup_table = tf.get_variable('lookup_table', [n_token, d_embed],
initializer=initializer)
y = embedding_lookup(lookup_table, x, use_tpu=False)
if d_proj != d_embed:
proj_W = tf.get_variable('proj_W', [d_embed, d_proj],
initializer=proj_initializer)
y = tf.einsum('ibe,ed->ibd', y, proj_W)
else:
proj_W = None
ret_params = [lookup_table, proj_W]
else:
tables, projs = [], []
cutoff_ends = [0] + cutoffs + [n_token]
x_size = tf.shape(x)
y = tf.zeros([x_size[0], x_size[1], d_proj])
for i in range(len(cutoff_ends) - 1):
with tf.variable_scope('cutoff_{}'.format(i)):
l_idx, r_idx = cutoff_ends[i], cutoff_ends[i + 1]
mask = (x >= l_idx) & (x < r_idx)
cur_x = tf.boolean_mask(x, mask) - l_idx
cur_d_embed = d_embed // (div_val ** i)
lookup_table = tf.get_variable('lookup_table',
[r_idx - l_idx, cur_d_embed],
initializer=initializer)
cur_y = embedding_lookup(lookup_table, cur_x, use_tpu=False)
if d_proj == cur_d_embed and not proj_same_dim:
proj_W = None
else:
proj_W = tf.get_variable('proj_W', [cur_d_embed, d_proj],
initializer=proj_initializer)
cur_y = tf.einsum('id,de->ie', cur_y, proj_W)
mask_idx = tf.to_int64(tf.where(mask))
y += tf.scatter_nd(mask_idx, cur_y, tf.to_int64(tf.shape(y)))
tables.append(lookup_table)
projs.append(proj_W)
ret_params = [tables, projs]
y *= emb_scale
return y, ret_params
def mul_adaptive_embedding_lookup(x, n_token, d_embed, d_proj, cutoffs, initializer,
proj_initializer, div_val=1, perms=None,
proj_same_dim=True,
scope='adaptive_embed'):
"""
perms: If None, first compute W = W1 x W2 (projection for each bin),
and then compute X x W (embedding lookup). If not None,
use bin-based embedding lookup with max_bin_size defined by
the shape of perms.
"""
emb_scale = d_proj ** 0.5
with tf.variable_scope(scope):
if div_val == 1:
lookup_table = tf.get_variable('lookup_table', [n_token, d_embed],
initializer=initializer)
y = embedding_lookup(lookup_table, x)
if d_proj != d_embed:
proj_W = tf.get_variable('proj_W', [d_embed, d_proj],
initializer=proj_initializer)
y = tf.einsum('ibe,ed->ibd', y, proj_W)
else:
proj_W = None
ret_params = [lookup_table, proj_W]
else:
tables, projs = [], []
cutoff_ends = [0] + cutoffs + [n_token]
x_size = tf.shape(x)
if perms is None:
cat_lookup = []
else:
cat_lookup = tf.zeros([x_size[0], x_size[1], d_proj])
for i in range(len(cutoff_ends) - 1):
with tf.variable_scope('cutoff_{}'.format(i)):
l_idx, r_idx = cutoff_ends[i], cutoff_ends[i + 1]
cur_d_embed = d_embed // (div_val ** i)
lookup_table = tf.get_variable('lookup_table',
[r_idx - l_idx, cur_d_embed],
initializer=initializer)
if cur_d_embed == d_proj and not proj_same_dim:
proj_W = None
else:
proj_W = tf.get_variable('proj_W', [cur_d_embed, d_proj],
initializer=proj_initializer)
if perms is None:
cat_lookup.append(tf.einsum('ie,ed->id', lookup_table, proj_W))
else:
# speed up the computation of the first bin
# also save some meory
if i == 0:
cur_y = embedding_lookup(lookup_table, tf.minimum(x, r_idx - 1))
if proj_W is not None:
cur_y = tf.einsum('ibe,ed->ibd', cur_y, proj_W)
cur_y *= perms[i][:, :, None]
cat_lookup += cur_y
else:
cur_x = tf.einsum('ib,ibk->k', tf.to_float(x - l_idx), perms[i])
cur_x = tf.to_int32(cur_x)
cur_y = embedding_lookup(lookup_table, cur_x)
if proj_W is not None:
cur_y = tf.einsum('ke,ed->kd', cur_y, proj_W)
cat_lookup += tf.einsum('kd,ibk->ibd', cur_y, perms[i])
tables.append(lookup_table)
projs.append(proj_W)
if perms is None:
cat_lookup = tf.concat(cat_lookup, 0)
y = embedding_lookup(cat_lookup, x)
else:
y = cat_lookup
ret_params = [tables, projs]
y *= emb_scale
return y, ret_params
def mask_adaptive_logsoftmax(hidden, target, n_token, d_embed, d_proj, cutoffs,
params, tie_projs,
initializer=None, proj_initializer=None,
div_val=1, scope='adaptive_softmax',
proj_same_dim=True,
return_mean=True, **kwargs):
def _logit(x, W, b, proj):
y = x
if proj is not None:
y = tf.einsum('ibd,ed->ibe', y, proj)
return tf.einsum('ibd,nd->ibn', y, W) + b
params_W, params_projs = params[0], params[1]
def _gather_logprob(logprob, target):
lp_size = tf.shape(logprob)
r = tf.range(lp_size[0])
idx = tf.stack([r, target], 1)
return tf.gather_nd(logprob, idx)
with tf.variable_scope(scope):
if len(cutoffs) == 0:
softmax_b = tf.get_variable('bias', [n_token],
initializer=tf.zeros_initializer())
output = _logit(hidden, params_W, softmax_b, params_projs)
nll = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target,
logits=output)
else:
cutoff_ends = [0] + cutoffs + [n_token]
nll = tf.zeros_like(target, dtype=tf.float32)
for i in range(len(cutoff_ends) - 1):
with tf.variable_scope('cutoff_{}'.format(i)):
l_idx, r_idx = cutoff_ends[i], cutoff_ends[i + 1]
mask = (target >= l_idx) & (target < r_idx)
mask_idx = tf.where(mask)
cur_target = tf.boolean_mask(target, mask) - l_idx
cur_d_embed = d_embed // (div_val ** i)
if div_val == 1:
cur_W = params_W[l_idx: r_idx]
else:
cur_W = params_W[i]
cur_b = tf.get_variable('b', [r_idx - l_idx],
initializer=tf.zeros_initializer())
if tie_projs[i]:
if div_val == 1:
cur_proj = params_projs
else:
cur_proj = params_projs[i]
else:
if (div_val == 1 or not proj_same_dim) and d_proj == cur_d_embed:
cur_proj = None
else:
cur_proj = tf.get_variable('proj', [cur_d_embed, d_proj],
initializer=proj_initializer)
if i == 0:
cluster_W = tf.get_variable('cluster_W', [len(cutoffs), d_embed],
initializer=tf.zeros_initializer())
cluster_b = tf.get_variable('cluster_b', [len(cutoffs)],
initializer=tf.zeros_initializer())
cur_W = tf.concat([cur_W, cluster_W], 0)
cur_b = tf.concat([cur_b, cluster_b], 0)
head_logit = _logit(hidden, cur_W, cur_b, cur_proj)
head_logprob = tf.nn.log_softmax(head_logit)
cur_head_logprob = tf.boolean_mask(head_logprob, mask)
cur_logprob = _gather_logprob(cur_head_logprob, cur_target)
else:
cur_head_logprob = tf.boolean_mask(head_logprob, mask)
cur_hidden = tf.boolean_mask(hidden, mask)
tail_logit = tf.squeeze(_logit(
cur_hidden[None], cur_W, cur_b, cur_proj), 0)
tail_logprob = tf.nn.log_softmax(tail_logit)
cur_logprob = (cur_head_logprob[:, cutoff_ends[1] + i - 1] +
_gather_logprob(tail_logprob, cur_target))
nll += tf.scatter_nd(mask_idx, -cur_logprob,
tf.to_int64(tf.shape(nll)))
if return_mean:
nll = tf.reduce_mean(nll)
return nll
def mul_adaptive_logsoftmax(hidden, target, n_token, d_embed, d_proj, cutoffs,
params, tie_projs,
initializer=None, proj_initializer=None,
div_val=1, perms=None, proj_same_dim=True,
scope='adaptive_softmax',
**kwargs):
def _logit(x, W, b, proj):
y = x
if x.shape.ndims == 3:
if proj is not None:
y = tf.einsum('ibd,ed->ibe', y, proj)
return tf.einsum('ibd,nd->ibn', y, W) + b
else:
if proj is not None:
y = tf.einsum('id,ed->ie', y, proj)
return tf.einsum('id,nd->in', y, W) + b
params_W, params_projs = params[0], params[1]
with tf.variable_scope(scope):
if len(cutoffs) == 0:
softmax_b = tf.get_variable('bias', [n_token],
initializer=tf.zeros_initializer())
output = _logit(hidden, params_W, softmax_b, params_projs)
nll = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target,
logits=output)
nll = tf.reduce_mean(nll)
else:
total_loss, total_cnt = 0, 0
cutoff_ends = [0] + cutoffs + [n_token]
for i in range(len(cutoff_ends) - 1):
with tf.variable_scope('cutoff_{}'.format(i)):
l_idx, r_idx = cutoff_ends[i], cutoff_ends[i + 1]
cur_d_embed = d_embed // (div_val ** i)
if div_val == 1:
cur_W = params_W[l_idx: r_idx]
else:
cur_W = params_W[i]
cur_b = tf.get_variable('b', [r_idx - l_idx],
initializer=tf.zeros_initializer())
if tie_projs[i]:
if div_val == 1:
cur_proj = params_projs
else:
cur_proj = params_projs[i]
else:
if (div_val == 1 or not proj_same_dim) and d_proj == cur_d_embed:
cur_proj = None
else:
cur_proj = tf.get_variable('proj', [cur_d_embed, d_proj],
initializer=proj_initializer)
if i == 0:
cluster_W = tf.get_variable('cluster_W', [len(cutoffs), d_embed],
initializer=tf.zeros_initializer())
cluster_b = tf.get_variable('cluster_b', [len(cutoffs)],
initializer=tf.zeros_initializer())
cur_W = tf.concat([cur_W, cluster_W], 0)
cur_b = tf.concat([cur_b, cluster_b], 0)
head_logit = _logit(hidden, cur_W, cur_b, cur_proj)
head_target = kwargs.get("head_target")
head_nll = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=head_target,
logits=head_logit)
masked_loss = head_nll * perms[i]
total_loss += tf.reduce_sum(masked_loss)
total_cnt += tf.reduce_sum(perms[i])
# head_logprob = tf.nn.log_softmax(head_logit)
# final_logprob = head_logprob * perms[i][:, :, None]
# final_target = tf.one_hot(target, tf.shape(head_logprob)[2])
# total_loss -= tf.einsum('ibn,ibn->', final_logprob, final_target)
# total_cnt += tf.reduce_sum(perms[i])
else:
cur_head_nll = tf.einsum('ib,ibk->k', head_nll, perms[i])
cur_hidden = tf.einsum('ibd,ibk->kd', hidden, perms[i])
tail_logit = _logit(cur_hidden, cur_W, cur_b, cur_proj)
tail_target = tf.einsum('ib,ibk->k', tf.to_float(target - l_idx),
perms[i])
tail_nll = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=tf.to_int32(tail_target),
logits=tail_logit)
sum_nll = cur_head_nll + tail_nll
mask = tf.reduce_sum(perms[i], [0, 1])
masked_loss = sum_nll * mask
total_loss += tf.reduce_sum(masked_loss)
total_cnt += tf.reduce_sum(mask)
nll = total_loss / total_cnt
return nll
def _create_mask(qlen, mlen, same_length=False):
attn_mask = tf.ones([qlen, qlen])
mask_u = tf.matrix_band_part(attn_mask, 0, -1)
mask_dia = tf.matrix_band_part(attn_mask, 0, 0)
attn_mask_pad = tf.zeros([qlen, mlen])
ret = tf.concat([attn_mask_pad, mask_u - mask_dia], 1)
if same_length:
mask_l = tf.matrix_band_part(attn_mask, -1, 0)
ret = tf.concat([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1)
return ret
def _cache_mem(curr_out, prev_mem, mem_len=None):
if mem_len is None or prev_mem is None:
new_mem = curr_out
elif mem_len == 0:
return prev_mem
else:
new_mem = tf.concat([prev_mem, curr_out], 0)[- mem_len:]
return tf.stop_gradient(new_mem)
def transformer(dec_inp, target, mems, n_token, n_layer, d_model, d_embed,
n_head, d_head, d_inner, dropout, dropatt,
initializer, is_training, proj_initializer=None,
mem_len=None, cutoffs=[], div_val=1, tie_projs=[],
same_length=False, clamp_len=-1, use_tpu=True,
input_perms=None, target_perms=None, head_target=None,
untie_r=False, proj_same_dim=True,
scope='transformer'):
"""
cutoffs: a list of python int. Cutoffs for adaptive softmax.
tie_projs: a list of python bools. Whether to tie the projections.
use_tpu: if True, use one_hot in embedding lookup and bin-based implementation
of adaptive softmax.
perms: a list of tensors. Each tensor should of size [len, bsz, bin_size].
Only used in the adaptive setting.
"""
new_mems = []
with tf.variable_scope(scope):
if untie_r:
r_w_bias = tf.get_variable('r_w_bias', [n_layer, n_head, d_head],
initializer=initializer)
r_r_bias = tf.get_variable('r_r_bias', [n_layer, n_head, d_head],
initializer=initializer)
else:
r_w_bias = tf.get_variable('r_w_bias', [n_head, d_head],
initializer=initializer)
r_r_bias = tf.get_variable('r_r_bias', [n_head, d_head],
initializer=initializer)
qlen = tf.shape(dec_inp)[0]
mlen = tf.shape(mems[0])[0] if mems is not None else 0
klen = mlen + qlen
if proj_initializer is None:
proj_initializer = initializer
lookup_fn = (mul_adaptive_embedding_lookup if use_tpu else
mask_adaptive_embedding_lookup)
embeddings, shared_params = lookup_fn(
x=dec_inp,
n_token=n_token,
d_embed=d_embed,
d_proj=d_model,
cutoffs=cutoffs,
initializer=initializer,
proj_initializer=proj_initializer,
div_val= div_val,
perms=input_perms,
proj_same_dim=proj_same_dim)
attn_mask = _create_mask(qlen, mlen, same_length)
pos_seq = tf.range(klen - 1, -1, -1.0)
if clamp_len > 0:
pos_seq = tf.minimum(pos_seq, clamp_len)
inv_freq = 1 / (10000 ** (tf.range(0, d_model, 2.0) / d_model))
pos_emb = positional_embedding(pos_seq, inv_freq)
output = tf.layers.dropout(embeddings, dropout, training=is_training)
pos_emb = tf.layers.dropout(pos_emb, dropout, training=is_training)
if mems is None:
mems = [None] * n_layer
for i in range(n_layer):
# cache new mems
new_mems.append(_cache_mem(output, mems[i], mem_len))
with tf.variable_scope('layer_{}'.format(i)):
output = rel_multihead_attn(
w=output,
r=pos_emb,
r_w_bias=r_w_bias if not untie_r else r_w_bias[i],
r_r_bias=r_r_bias if not untie_r else r_r_bias[i],
attn_mask=attn_mask,
mems=mems[i],
d_model=d_model,
n_head=n_head,
d_head=d_head,
dropout=dropout,
dropatt=dropatt,
is_training=is_training,
kernel_initializer=initializer)
output = positionwise_FF(
inp=output,
d_model=d_model,
d_inner=d_inner,
dropout=dropout,
kernel_initializer=initializer,
is_training=is_training)
output = tf.layers.dropout(output, dropout, training=is_training)
logsoftmax_fn = (mul_adaptive_logsoftmax if use_tpu else
mask_adaptive_logsoftmax)
loss = logsoftmax_fn(
hidden=output,
target=target,
n_token=n_token,
d_embed=d_embed,
d_proj=d_model,
cutoffs=cutoffs,
params=shared_params,
tie_projs=tie_projs,
initializer=initializer,
proj_initializer=proj_initializer,
div_val=div_val,
perms=target_perms,
head_target=head_target,
proj_same_dim=proj_same_dim)
return loss, new_mems

View file

@ -0,0 +1,102 @@
#!/bin/bash
# Data
DATA_ROOT=../data/enwik8/
# Model
N_LAYER=12
D_MODEL=512
D_EMBED=512
N_HEAD=8
D_HEAD=64
D_INNER=2048
# Training
TGT_LEN=512
MEM_LEN=512
BSZ=24
NUM_CORE=4
# Testing
TEST_TGT_LEN=80
TEST_MEM_LEN=2100
TEST_CLAMP_LEN=820
TEST_BSZ=10
TEST_NUM_CORE=1
if [[ $1 == 'train_data' ]]; then
python data_utils.py \
--data_dir=${DATA_ROOT}/ \
--dataset=enwik8 \
--tgt_len=${TGT_LEN} \
--per_host_train_bsz=${BSZ} \
--per_host_valid_bsz=${BSZ} \
--num_passes=1 \
--use_tpu=False \
${@:2}
elif [[ $1 == 'test_data' ]]; then
python data_utils.py \
--data_dir=${DATA_ROOT}/ \
--dataset=enwik8 \
--tgt_len=${TEST_TGT_LEN} \
--per_host_test_bsz=${TEST_BSZ} \
--num_passes=1 \
--use_tpu=False \
${@:2}
elif [[ $1 == 'train' ]]; then
echo 'Run training...'
python train_gpu.py \
--data_dir=${DATA_ROOT}/tfrecords \
--record_info_dir=${DATA_ROOT}/tfrecords/ \
--corpus_info_path=${DATA_ROOT}/corpus-info.json \
--model_dir=EXP-enwik8 \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--dropout=0.1 \
--dropatt=0.0 \
--learning_rate=0.00025 \
--warmup_steps=0 \
--train_steps=400000 \
--tgt_len=${TGT_LEN} \
--mem_len=${MEM_LEN} \
--train_batch_size=${BSZ} \
--num_core_per_host=${NUM_CORE} \
--iterations=200 \
--save_steps=4000 \
--do_train=True \
--do_eval=False \
${@:2}
elif [[ $1 == 'eval' ]]; then
echo 'Run evaluation...'
python train_gpu.py \
--data_dir=${DATA_ROOT}/tfrecords \
--record_info_dir=${DATA_ROOT}/tfrecords/ \
--corpus_info_path=${DATA_ROOT}/corpus-info.json \
--model_dir=EXP-enwik8 \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--dropout=0.0 \
--dropatt=0.0 \
--tgt_len=${TEST_TGT_LEN} \
--mem_len=${TEST_MEM_LEN} \
--clamp_len=${TEST_CLAMP_LEN} \
--same_length=True \
--eval_batch_size=${TEST_BSZ} \
--num_core_per_host=${TEST_NUM_CORE} \
--do_train=False \
--do_eval=True \
--eval_split=test \
${@:2}
else
echo 'unknown argment 1'
fi

View file

@ -0,0 +1,122 @@
#!/bin/bash
# Path
LOCAL_DIR=../data/enwik8/
GSDATA=
GSEXP=
# TPU setting
NUM_HOST=2
NUM_CORE=16 # TPUv2 -> 8 | TPUv3 -> 16
TEST_NUM_HOST=1
TEST_NUM_CORE=8 # TPUv2 -> 8 | TPUv3 -> 16
# Model
N_LAYER=24
D_MODEL=1024
D_EMBED=1024
N_HEAD=8
D_HEAD=128
D_INNER=3072
# Training
TGT_LEN=768
MEM_LEN=768
TRAIN_BSZ=64
VALID_BSZ=64
# Testing
TEST_TGT_LEN=128
TEST_MEM_LEN=3800
TEST_CLAMP_LEN=1000
TEST_BSZ=16
if [[ $1 == 'train_data' ]]; then
python data_utils.py \
--data_dir=${LOCAL_DIR}/ \
--dataset=enwik8 \
--tgt_len=${TGT_LEN} \
--per_host_train_bsz=${TRAIN_BSZ} \
--per_host_valid_bsz=${VALID_BSZ} \
--num_core_per_host=${NUM_CORE} \
--num_passes=10 \
--use_tpu=True \
${@:2}
SRC_PATTERN=train.bsz-${TRAIN_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}*
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/enwik8-tfrecords/
SRC_PATTERN=valid.bsz-${VALID_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}*
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/enwik8-tfrecords/
elif [[ $1 == 'test_data' ]]; then
python data_utils.py \
--data_dir=${LOCAL_DIR}/ \
--dataset=enwik8 \
--tgt_len=${TEST_TGT_LEN} \
--per_host_test_bsz=${TEST_BSZ} \
--num_core_per_host=${TEST_NUM_CORE} \
--num_passes=1 \
--use_tpu=True \
${@:2}
SRC_PATTERN=test.bsz-${TEST_BSZ}.tlen-${TEST_TGT_LEN}.core-${TEST_NUM_CORE}*
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/enwik8-tfrecords/
elif [[ $1 == 'train' ]]; then
echo 'Run training...'
python train.py \
--data_dir=${GSDATA}/enwik8-tfrecords \
--record_info_dir=${LOCAL_DIR}/tfrecords/ \
--corpus_info_path=${LOCAL_DIR}/corpus-info.json \
--model_dir=${GSEXP}/enwik8 \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--dropout=0.15 \
--dropatt=0.15 \
--learning_rate=0.00025 \
--warmup_steps=4000 \
--train_steps=400000 \
--tgt_len=${TGT_LEN} \
--mem_len=${MEM_LEN} \
--train_batch_size=${TRAIN_BSZ} \
--use_tpu=True \
--num_host=${NUM_HOST} \
--num_core_per_host=${NUM_CORE} \
--iterations=1000 \
--save_steps=10000 \
--do_train=True \
--do_eval=False \
${@:2}
elif [[ $1 == 'eval' ]]; then
echo 'Run evaluation...'
python train.py \
--data_dir=${GSDATA}/enwik8-tfrecords \
--record_info_dir=${LOCAL_DIR}/tfrecords/ \
--corpus_info_path=${LOCAL_DIR}/corpus-info.json \
--model_dir=${GSEXP}/enwik8 \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--tgt_len=${TEST_TGT_LEN} \
--mem_len=${TEST_MEM_LEN} \
--eval_batch_size=${TEST_BSZ} \
--num_host=${TEST_NUM_HOST} \
--num_core_per_host=${TEST_NUM_CORE} \
--use_tpu=True \
--do_train=False \
--do_eval_only=True \
--eval_split=test \
${@:2}
else
echo 'unknown argment 1'
fi

View file

@ -0,0 +1,110 @@
#!/bin/bash
# Data
DATA_ROOT=../data/one-billion-words/
# Model
DIV_VAL=4
N_LAYER=18
D_MODEL=1024
D_EMBED=1024
N_HEAD=8
D_HEAD=128
D_INNER=4096
# Training
TGT_LEN=256
MEM_LEN=256
BSZ=256
NUM_CORE=4
# Testing
TEST_TGT_LEN=32
TEST_MEM_LEN=128
TEST_CLAMP_LEN=-1
TEST_BSZ=16
TEST_NUM_CORE=1
if [[ $1 == 'train_data' ]]; then
python data_utils.py \
--data_dir=${DATA_ROOT}/ \
--dataset=lm1b \
--tgt_len=${TGT_LEN} \
--per_host_train_bsz=${BSZ} \
--per_host_valid_bsz=${BSZ} \
--num_passes=1 \
--use_tpu=False \
${@:2}
elif [[ $1 == 'test_data' ]]; then
python data_utils.py \
--data_dir=${DATA_ROOT}/ \
--dataset=lm1b \
--tgt_len=${TEST_TGT_LEN} \
--per_host_test_bsz=${TEST_BSZ} \
--num_passes=1 \
--use_tpu=False \
${@:2}
elif [[ $1 == 'train' ]]; then
echo 'Run training...'
python train_gpu.py \
--data_dir=${DATA_ROOT}/tfrecords \
--record_info_dir=${DATA_ROOT}/tfrecords/ \
--corpus_info_path=${DATA_ROOT}/corpus-info.json \
--model_dir=EXP-lm1b \
--div_val=${DIV_VAL} \
--untie_r=True \
--proj_share_all_but_first=False \
--proj_same_dim=False \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--dropout=0.1 \
--dropatt=0.0 \
--learning_rate=0.00025 \
--warmup_steps=0 \
--train_steps=400000 \
--tgt_len=${TGT_LEN} \
--mem_len=${MEM_LEN} \
--train_batch_size=${BSZ} \
--num_core_per_host=${NUM_CORE} \
--iterations=200 \
--save_steps=4000 \
${@:2}
elif [[ $1 == 'eval' ]]; then
echo 'Run evaluation...'
python train_gpu.py \
--data_dir=${DATA_ROOT}/tfrecords \
--record_info_dir=${DATA_ROOT}/tfrecords/ \
--corpus_info_path=${DATA_ROOT}/corpus-info.json \
--model_dir=EXP-lm1b \
--div_val=${DIV_VAL} \
--untie_r=True \
--proj_share_all_but_first=False \
--proj_same_dim=False \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--dropout=0.0 \
--dropatt=0.0 \
--tgt_len=${TEST_TGT_LEN} \
--mem_len=${TEST_MEM_LEN} \
--clamp_len=${TEST_CLAMP_LEN} \
--same_length=True \
--eval_batch_size=${TEST_BSZ} \
--num_core_per_host=${TEST_NUM_CORE} \
--do_train=False \
--do_eval=True \
--eval_split=test \
${@:2}
else
echo 'unknown argment 1'
fi

View file

@ -0,0 +1,136 @@
#!/bin/bash
# Path
LOCAL_DIR=../data/one-billion-words/
GSDATA=
GSEXP=
# TPU setting
NUM_HOST=32
NUM_CORE=16 # TPUv2 -> 8 | TPUv3 -> 16
TEST_NUM_HOST=1
TEST_NUM_CORE=8 # TPUv2 -> 8 | TPUv3 -> 16
# Model
DIV_VAL=4
N_LAYER=24
D_MODEL=1280
D_EMBED=1280
N_HEAD=16
D_HEAD=80
D_INNER=8192
# Training
TGT_LEN=32
MEM_LEN=32
TRAIN_BSZ=512
VALID_BSZ=512
TRAIN_BSZ_PER_HOST=$((TRAIN_BSZ / NUM_HOST))
VALID_BSZ_PER_HOST=$((VALID_BSZ / NUM_HOST))
# Testing
TEST_TGT_LEN=32
TEST_MEM_LEN=128
TEST_CLAMP_LEN=-1
TEST_BSZ=8
if [[ $1 == 'train_data' ]]; then
python data_utils.py \
--data_dir=${LOCAL_DIR}/ \
--dataset=lm1b \
--tgt_len=${TGT_LEN} \
--per_host_train_bsz=${TRAIN_BSZ_PER_HOST} \
--per_host_valid_bsz=${VALID_BSZ_PER_HOST} \
--num_core_per_host=${NUM_CORE} \
--num_passes=10 \
--use_tpu=True \
${@:2}
SRC_PATTERN=train.bsz-${TRAIN_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}*
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/lm1b-tfrecords/
SRC_PATTERN=valid.bsz-${VALID_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}*
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/lm1b-tfrecords/
elif [[ $1 == 'test_data' ]]; then
python data_utils.py \
--data_dir=${LOCAL_DIR}/ \
--dataset=lm1b \
--tgt_len=${TEST_TGT_LEN} \
--per_host_test_bsz=${TEST_BSZ} \
--num_core_per_host=${TEST_NUM_CORE} \
--num_passes=1 \
--use_tpu=True \
${@:2}
SRC_PATTERN=test.bsz-${TEST_BSZ}.tlen-${TEST_TGT_LEN}.core-${TEST_NUM_CORE}*
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/lm1b-tfrecords/
elif [[ $1 == 'train' ]]; then
echo 'Run training...'
python train.py \
--data_dir=${GSDATA}/lm1b-tfrecords \
--record_info_dir=${LOCAL_DIR}/tfrecords/ \
--corpus_info_path=${LOCAL_DIR}/corpus-info.json \
--model_dir=${GSEXP}/lm1b \
--div_val=${DIV_VAL} \
--untie_r=True \
--proj_share_all_but_first=False \
--proj_same_dim=False \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--dropout=0.05 \
--dropatt=0.05 \
--init_std=0.005 \
--learning_rate=0.0001 \
--warmup_steps=30000 \
--train_steps=1200000 \
--tgt_len=${TGT_LEN} \
--mem_len=${MEM_LEN} \
--train_batch_size=${TRAIN_BSZ} \
--num_hosts=${NUM_HOST} \
--num_core_per_host=${NUM_CORE} \
--iterations=1000 \
--save_steps=10000 \
--use_tpu=True \
--do_eval=False \
${@:2}
elif [[ $1 == 'eval' ]]; then
echo 'Run evaluation...'
python train.py \
--data_dir=${GSDATA}/lm1b-tfrecords \
--record_info_dir=${LOCAL_DIR}/tfrecords/ \
--corpus_info_path=${LOCAL_DIR}/corpus-info.json \
--model_dir=${GSEXP}/lm1b \
--div_val=${DIV_VAL} \
--untie_r=True \
--proj_share_all_but_first=False \
--proj_same_dim=False \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--tgt_len=${TEST_TGT_LEN} \
--mem_len=${TEST_MEM_LEN} \
--clamp_len=${TEST_CLAMP_LEN} \
--same_length=True \
--eval_batch_size=${TEST_BSZ} \
--num_host=${TEST_NUM_HOST} \
--num_core_per_host=${TEST_NUM_CORE} \
--use_tpu=True \
--do_train=False \
--do_eval_only=True \
--eval_split=test \
${@:2}
else
echo 'unknown argment 1'
fi

View file

@ -0,0 +1,102 @@
#!/bin/bash
# Data
DATA_ROOT=../data/text8/
# Model
N_LAYER=12
D_MODEL=512
D_EMBED=512
N_HEAD=8
D_HEAD=64
D_INNER=2048
# Training
TGT_LEN=512
MEM_LEN=512
BSZ=24
NUM_CORE=4
# Testing
TEST_TGT_LEN=80
TEST_MEM_LEN=2100
TEST_CLAMP_LEN=820
TEST_BSZ=10
TEST_NUM_CORE=1
if [[ $1 == 'train_data' ]]; then
python data_utils.py \
--data_dir=${DATA_ROOT}/ \
--dataset=text8 \
--tgt_len=${TGT_LEN} \
--per_host_train_bsz=${BSZ} \
--per_host_valid_bsz=${BSZ} \
--num_passes=1 \
--use_tpu=False \
${@:2}
elif [[ $1 == 'test_data' ]]; then
python data_utils.py \
--data_dir=${DATA_ROOT}/ \
--dataset=text8 \
--tgt_len=${TEST_TGT_LEN} \
--per_host_test_bsz=${TEST_BSZ} \
--num_passes=1 \
--use_tpu=False \
${@:2}
elif [[ $1 == 'train' ]]; then
echo 'Run training...'
python train_gpu.py \
--data_dir=${DATA_ROOT}/tfrecords \
--record_info_dir=${DATA_ROOT}/tfrecords/ \
--corpus_info_path=${DATA_ROOT}/corpus-info.json \
--model_dir=EXP-text8 \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--dropout=0.1 \
--dropatt=0.0 \
--learning_rate=0.00025 \
--warmup_steps=0 \
--train_steps=400000 \
--tgt_len=${TGT_LEN} \
--mem_len=${MEM_LEN} \
--train_batch_size=${BSZ} \
--num_core_per_host=${NUM_CORE} \
--iterations=200 \
--save_steps=4000 \
--do_train=True \
--do_eval=False \
${@:2}
elif [[ $1 == 'eval' ]]; then
echo 'Run evaluation...'
python train_gpu.py \
--data_dir=${DATA_ROOT}/tfrecords \
--record_info_dir=${DATA_ROOT}/tfrecords/ \
--corpus_info_path=${DATA_ROOT}/corpus-info.json \
--model_dir=EXP-text8 \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--dropout=0.0 \
--dropatt=0.0 \
--tgt_len=${TEST_TGT_LEN} \
--mem_len=${TEST_MEM_LEN} \
--clamp_len=${TEST_CLAMP_LEN} \
--same_length=True \
--eval_batch_size=${TEST_BSZ} \
--num_core_per_host=${TEST_NUM_CORE} \
--do_train=False \
--do_eval=True \
--eval_split=test \
${@:2}
else
echo 'unknown argment 1'
fi

View file

@ -0,0 +1,122 @@
#!/bin/bash
# Path
LOCAL_DIR=../data/text8/
GSDATA=
GSEXP=
# TPU setting
NUM_HOST=2
NUM_CORE=16 # TPUv2 -> 8 | TPUv3 -> 16
TEST_NUM_HOST=1
TEST_NUM_CORE=8 # TPUv2 -> 8 | TPUv3 -> 16
# Model
N_LAYER=24
D_MODEL=1024
D_EMBED=1024
N_HEAD=8
D_HEAD=128
D_INNER=3072
# Training
TGT_LEN=768
MEM_LEN=768
TRAIN_BSZ=64
VALID_BSZ=64
# Testing
TEST_TGT_LEN=128
TEST_MEM_LEN=3800
TEST_CLAMP_LEN=1000
TEST_BSZ=16
if [[ $1 == 'train_data' ]]; then
python data_utils.py \
--data_dir=${LOCAL_DIR}/ \
--dataset=text8 \
--tgt_len=${TGT_LEN} \
--per_host_train_bsz=${TRAIN_BSZ} \
--per_host_valid_bsz=${VALID_BSZ} \
--num_core_per_host=${NUM_CORE} \
--num_passes=10 \
--use_tpu=True \
${@:2}
SRC_PATTERN=train.bsz-${TRAIN_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}*
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/text8-tfrecords/
SRC_PATTERN=valid.bsz-${VALID_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}*
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/text8-tfrecords/
elif [[ $1 == 'test_data' ]]; then
python data_utils.py \
--data_dir=${LOCAL_DIR}/ \
--dataset=text8 \
--tgt_len=${TEST_TGT_LEN} \
--per_host_test_bsz=${TEST_BSZ} \
--num_core_per_host=${TEST_NUM_CORE} \
--num_passes=1 \
--use_tpu=True \
${@:2}
SRC_PATTERN=test.bsz-${TEST_BSZ}.tlen-${TEST_TGT_LEN}.core-${TEST_NUM_CORE}*
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/text8-tfrecords/
elif [[ $1 == 'train' ]]; then
echo 'Run training...'
python train.py \
--data_dir=${GSDATA}/text8-tfrecords \
--record_info_dir=${LOCAL_DIR}/tfrecords/ \
--corpus_info_path=${LOCAL_DIR}/corpus-info.json \
--model_dir=${GSEXP}/text8 \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--dropout=0.15 \
--dropatt=0.15 \
--learning_rate=0.00025 \
--warmup_steps=4000 \
--train_steps=400000 \
--tgt_len=${TGT_LEN} \
--mem_len=${MEM_LEN} \
--train_batch_size=${TRAIN_BSZ} \
--use_tpu=True \
--num_host=${NUM_HOST} \
--num_core_per_host=${NUM_CORE} \
--iterations=1000 \
--save_steps=10000 \
--do_train=True \
--do_eval=False \
${@:2}
elif [[ $1 == 'eval' ]]; then
echo 'Run evaluation...'
python train.py \
--data_dir=${GSDATA}/text8-tfrecords \
--record_info_dir=${LOCAL_DIR}/tfrecords/ \
--corpus_info_path=${LOCAL_DIR}/corpus-info.json \
--model_dir=${GSEXP}/text8 \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--tgt_len=${TEST_TGT_LEN} \
--mem_len=${TEST_MEM_LEN} \
--eval_batch_size=${TEST_BSZ} \
--num_host=${TEST_NUM_HOST} \
--num_core_per_host=${TEST_NUM_CORE} \
--use_tpu=True \
--do_train=False \
--do_eval_only=True \
--eval_split=test \
${@:2}
else
echo 'unknown argment 1'
fi

View file

@ -0,0 +1,108 @@
#!/bin/bash
# Data
DATA_ROOT=../data/wikitext-103/
# Model
DIV_VAL=1
N_LAYER=16
D_MODEL=410
D_EMBED=410
N_HEAD=10
D_HEAD=41
D_INNER=2100
# Training
TGT_LEN=150
MEM_LEN=150
BSZ=60
NUM_CORE=4
# Testing
TEST_TGT_LEN=64
TEST_MEM_LEN=640
TEST_CLAMP_LEN=400
TEST_BSZ=10
TEST_NUM_CORE=1
if [[ $1 == 'train_data' ]]; then
python data_utils.py \
--data_dir=${DATA_ROOT}/ \
--dataset=wt103 \
--tgt_len=${TGT_LEN} \
--per_host_train_bsz=${BSZ} \
--per_host_valid_bsz=${BSZ} \
--num_passes=1 \
--use_tpu=False \
${@:2}
elif [[ $1 == 'test_data' ]]; then
python data_utils.py \
--data_dir=${DATA_ROOT}/ \
--dataset=enwik8 \
--tgt_len=${TEST_TGT_LEN} \
--per_host_test_bsz=${TEST_BSZ} \
--num_passes=1 \
--use_tpu=False \
${@:2}
elif [[ $1 == 'train' ]]; then
echo 'Run training...'
python train_gpu.py \
--data_dir=${DATA_ROOT}/tfrecords \
--record_info_dir=${DATA_ROOT}/tfrecords/ \
--corpus_info_path=${DATA_ROOT}/corpus-info.json \
--model_dir=EXP-wt103 \
--div_val=${DIV_VAL} \
--untie_r=True \
--proj_share_all_but_first=True \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--dropout=0.1 \
--dropatt=0.0 \
--learning_rate=0.00025 \
--warmup_steps=0 \
--train_steps=400000 \
--tgt_len=${TGT_LEN} \
--mem_len=${MEM_LEN} \
--train_batch_size=${BSZ} \
--num_core_per_host=${NUM_CORE} \
--iterations=200 \
--save_steps=4000 \
${@:2}
elif [[ $1 == 'eval' ]]; then
echo 'Run evaluation...'
python train_gpu.py \
--data_dir=${DATA_ROOT}/tfrecords \
--record_info_dir=${DATA_ROOT}/tfrecords/ \
--corpus_info_path=${DATA_ROOT}/corpus-info.json \
--model_dir=EXP-wt103 \
--div_val=${DIV_VAL} \
--untie_r=True \
--proj_share_all_but_first=True \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--dropout=0.0 \
--dropatt=0.0 \
--tgt_len=${TEST_TGT_LEN} \
--mem_len=${TEST_MEM_LEN} \
--clamp_len=${TEST_CLAMP_LEN} \
--same_length=True \
--eval_batch_size=${TEST_BSZ} \
--num_core_per_host=${TEST_NUM_CORE} \
--do_train=False \
--do_eval=True \
--eval_split=test \
${@:2}
else
echo 'unknown argment 1'
fi

View file

@ -0,0 +1,134 @@
#!/bin/bash
# Path
LOCAL_DIR=../data/wikitext-103/
GSDATA=
GSEXP=
# TPU setting
NUM_HOST=4
NUM_CORE=16 # TPUv2 -> 8 | TPUv3 -> 16
TEST_NUM_HOST=1
TEST_NUM_CORE=8 # TPUv2 -> 8 | TPUv3 -> 16
# Model
DIV_VAL=4
N_LAYER=18
D_MODEL=1024
D_EMBED=1024
N_HEAD=16
D_HEAD=64
D_INNER=4096
# Training
TGT_LEN=384
MEM_LEN=384
TRAIN_BSZ=128
VALID_BSZ=128
# Testing
TEST_TGT_LEN=128
TEST_MEM_LEN=1600
TEST_CLAMP_LEN=1000
TEST_BSZ=8
if [[ $1 == 'train_data' ]]; then
python data_utils.py \
--data_dir=${LOCAL_DIR}/ \
--dataset=wt103 \
--tgt_len=${TGT_LEN} \
--per_host_train_bsz=${TRAIN_BSZ} \
--per_host_valid_bsz=${VALID_BSZ} \
--num_core_per_host=${NUM_CORE} \
--num_passes=10 \
--use_tpu=True \
${@:2}
SRC_PATTERN=train.bsz-${TRAIN_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}*
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/wt103-tfrecords/
SRC_PATTERN=valid.bsz-${VALID_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}*
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/wt103-tfrecords/
elif [[ $1 == 'test_data' ]]; then
python data_utils.py \
--data_dir=${LOCAL_DIR}/ \
--dataset=wt103 \
--tgt_len=${TEST_TGT_LEN} \
--per_host_test_bsz=${TEST_BSZ} \
--num_core_per_host=${TEST_NUM_CORE} \
--num_passes=1 \
--use_tpu=True \
${@:2}
SRC_PATTERN=test.bsz-${TEST_BSZ}.tlen-${TEST_TGT_LEN}.core-${TEST_NUM_CORE}*
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/wt103-tfrecords/
elif [[ $1 == 'train' ]]; then
echo 'Run training...'
python train.py \
--data_dir=${GSDATA}/wt103-tfrecords \
--record_info_dir=${LOCAL_DIR}/tfrecords/ \
--corpus_info_path=${LOCAL_DIR}/corpus-info.json \
--model_dir=${GSEXP}/wt103 \
--div_val=${DIV_VAL} \
--untie_r=True \
--proj_share_all_but_first=True \
--proj_same_dim=True \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--dropout=0.2 \
--dropatt=0.2 \
--init_std=0.005 \
--learning_rate=0.00025 \
--warmup_steps=16000 \
--train_steps=4000000 \
--tgt_len=${TGT_LEN} \
--mem_len=${MEM_LEN} \
--train_batch_size=${TRAIN_BSZ} \
--num_hosts=${NUM_HOST} \
--num_core_per_host=${NUM_CORE} \
--iterations=1000 \
--save_steps=10000 \
--use_tpu=True \
--do_eval=False \
${@:2}
elif [[ $1 == 'eval' ]]; then
echo 'Run evaluation...'
python train.py \
--data_dir=${GSDATA}/wt103-tfrecords \
--record_info_dir=${LOCAL_DIR}/tfrecords/ \
--corpus_info_path=${LOCAL_DIR}/corpus-info.json \
--model_dir=${GSEXP}/wt103 \
--div_val=${DIV_VAL} \
--untie_r=True \
--proj_share_all_but_first=True \
--proj_same_dim=True \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--tgt_len=${TEST_TGT_LEN} \
--mem_len=${TEST_MEM_LEN} \
--clamp_len=${TEST_CLAMP_LEN} \
--same_length=True \
--eval_batch_size=${TEST_BSZ} \
--num_host=${TEST_NUM_HOST} \
--num_core_per_host=${TEST_NUM_CORE} \
--use_tpu=True \
--do_train=False \
--do_eval_only=True \
--eval_split=test \
${@:2}
else
echo 'unknown argment 1'
fi

View file

@ -0,0 +1,87 @@
#!/bin/bash
URL=http://curtis.ml.cmu.edu/datasets/pretrained_xl
DATA_ROOT=./
function download () {
fileurl=${1}
filename=${fileurl##*/}
if [ ! -f ${filename} ]; then
echo ">>> Download '${filename}' from '${fileurl}'."
wget --quiet ${fileurl}
else
echo "*** File '${filename}' exists. Skip."
fi
}
cd $DATA_ROOT
mkdir -p pretrained_xl && cd pretrained_xl
# enwik8
mkdir -p tf_enwik8 && cd tf_enwik8
mkdir -p data && cd data
download ${URL}/tf_enwiki8/data/cache.pkl
download ${URL}/tf_enwiki8/data/corpus-info.json
cd ..
mkdir -p model && cd model
download ${URL}/tf_enwiki8/model/checkpoint
download ${URL}/tf_enwiki8/model/model.ckpt-0.data-00000-of-00001
download ${URL}/tf_enwiki8/model/model.ckpt-0.index
download ${URL}/tf_enwiki8/model/model.ckpt-0.meta
cd ..
cd ..
# text8
mkdir -p tf_text8 && cd tf_text8
mkdir -p data && cd data
download ${URL}/tf_text8/data/cache.pkl
download ${URL}/tf_text8/data/corpus-info.json
cd ..
mkdir -p model && cd model
download ${URL}/tf_text8/model/checkpoint
download ${URL}/tf_text8/model/model.ckpt-0.data-00000-of-00001
download ${URL}/tf_text8/model/model.ckpt-0.index
download ${URL}/tf_text8/model/model.ckpt-0.meta
cd ..
cd ..
# wt103
mkdir -p tf_wt103 && cd tf_wt103
mkdir -p data && cd data
download ${URL}/tf_wt103/data/cache.pkl
download ${URL}/tf_wt103/data/corpus-info.json
cd ..
mkdir -p model && cd model
download ${URL}/tf_wt103/model/checkpoint
download ${URL}/tf_wt103/model/model.ckpt-0.data-00000-of-00001
download ${URL}/tf_wt103/model/model.ckpt-0.index
download ${URL}/tf_wt103/model/model.ckpt-0.meta
cd ..
cd ..
# lm1b
mkdir -p tf_lm1b && cd tf_lm1b
mkdir -p data && cd data
download ${URL}/tf_lm1b/data/cache.pkl
download ${URL}/tf_lm1b/data/corpus-info.json
cd ..
mkdir -p model && cd model
download ${URL}/tf_lm1b/model/checkpoint
download ${URL}/tf_lm1b/model/model.ckpt-1191000.data-00000-of-00001
download ${URL}/tf_lm1b/model/model.ckpt-1191000.index
download ${URL}/tf_lm1b/model/model.ckpt-1191000.meta
cd ..
cd ..

View file

@ -0,0 +1,58 @@
#!/bin/bash
# Data
DATA_ROOT=./
DATA_DIR=${DATA_ROOT}/pretrained_xl/tf_enwik8/data
MODEL_DIR=${DATA_ROOT}/pretrained_xl/tf_enwik8/model
# Model
N_LAYER=24
D_MODEL=1024
D_EMBED=1024
N_HEAD=8
D_HEAD=128
D_INNER=3072
# Testing
TEST_TGT_LEN=128
TEST_MEM_LEN=3800
TEST_CLAMP_LEN=1000
TEST_CKPT_PATH=${MODEL_DIR}/model.ckpt-0
TEST_BSZ=16
TEST_NUM_CORE=2
echo 'Preprocess test set...'
python data_utils.py \
--data_dir=${DATA_DIR}/ \
--dataset=enwik8 \
--tgt_len=${TEST_TGT_LEN} \
--per_host_test_bsz=${TEST_BSZ} \
--num_passes=1 \
--use_tpu=False
echo 'Run evaluation on test set...'
python train_gpu.py \
--data_dir=${DATA_DIR}/tfrecords \
--record_info_dir=${DATA_DIR}/tfrecords/ \
--corpus_info_path=${DATA_DIR}/corpus-info.json \
--eval_ckpt_path=${TEST_CKPT_PATH} \
--model_dir=EXP-enwik8 \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--dropout=0.0 \
--dropatt=0.0 \
--tgt_len=${TEST_TGT_LEN} \
--mem_len=${TEST_MEM_LEN} \
--clamp_len=${TEST_CLAMP_LEN} \
--same_length=True \
--eval_batch_size=${TEST_BSZ} \
--num_core_per_host=${TEST_NUM_CORE} \
--do_train=False \
--do_eval=True \
--eval_split=test

View file

@ -0,0 +1,63 @@
#!/bin/bash
# Data
DATA_ROOT=./
DATA_DIR=${DATA_ROOT}/pretrained_xl/tf_lm1b/data
MODEL_DIR=${DATA_ROOT}/pretrained_xl/tf_lm1b/model
# Model
DIV_VAL=4
N_LAYER=24
D_MODEL=1280
D_EMBED=1280
N_HEAD=16
D_HEAD=80
D_INNER=8192
# Testing
TEST_TGT_LEN=32
TEST_MEM_LEN=128
TEST_CLAMP_LEN=-1
TEST_CKPT_PATH=${MODEL_DIR}/model.ckpt-1191000
TEST_BSZ=16
TEST_NUM_CORE=1
echo 'Preprocess test set...'
python data_utils.py \
--data_dir=${DATA_DIR}/ \
--dataset=lm1b \
--tgt_len=${TEST_TGT_LEN} \
--per_host_test_bsz=${TEST_BSZ} \
--num_passes=1 \
--use_tpu=False
echo 'Run evaluation on test set...'
python train_gpu.py \
--data_dir=${DATA_DIR}/tfrecords \
--record_info_dir=${DATA_DIR}/tfrecords/ \
--corpus_info_path=${DATA_DIR}/corpus-info.json \
--eval_ckpt_path=${TEST_CKPT_PATH} \
--model_dir=EXP-lm1b \
--div_val=${DIV_VAL} \
--untie_r=True \
--proj_share_all_but_first=False \
--proj_same_dim=False \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--dropout=0.0 \
--dropatt=0.0 \
--tgt_len=${TEST_TGT_LEN} \
--mem_len=${TEST_MEM_LEN} \
--clamp_len=${TEST_CLAMP_LEN} \
--same_length=True \
--eval_batch_size=${TEST_BSZ} \
--num_core_per_host=${TEST_NUM_CORE} \
--do_train=False \
--do_eval=True \
--eval_split=test

View file

@ -0,0 +1,58 @@
#!/bin/bash
# Data
DATA_ROOT=./
DATA_DIR=${DATA_ROOT}/pretrained_xl/tf_text8/data
MODEL_DIR=${DATA_ROOT}/pretrained_xl/tf_text8/model
# Model
N_LAYER=24
D_MODEL=1024
D_EMBED=1024
N_HEAD=8
D_HEAD=128
D_INNER=3072
# Testing
TEST_TGT_LEN=128
TEST_MEM_LEN=3800
TEST_CLAMP_LEN=1000
TEST_CKPT_PATH=${MODEL_DIR}/model.ckpt-0
TEST_BSZ=16
TEST_NUM_CORE=2
echo 'Preprocess test set...'
python data_utils.py \
--data_dir=${DATA_DIR}/ \
--dataset=text8 \
--tgt_len=${TEST_TGT_LEN} \
--per_host_test_bsz=${TEST_BSZ} \
--num_passes=1 \
--use_tpu=False
echo 'Run evaluation on test set...'
python train_gpu.py \
--data_dir=${DATA_DIR}/tfrecords \
--record_info_dir=${DATA_DIR}/tfrecords/ \
--corpus_info_path=${DATA_DIR}/corpus-info.json \
--eval_ckpt_path=${TEST_CKPT_PATH} \
--model_dir=EXP-text8 \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--dropout=0.0 \
--dropatt=0.0 \
--tgt_len=${TEST_TGT_LEN} \
--mem_len=${TEST_MEM_LEN} \
--clamp_len=${TEST_CLAMP_LEN} \
--same_length=True \
--eval_batch_size=${TEST_BSZ} \
--num_core_per_host=${TEST_NUM_CORE} \
--do_train=False \
--do_eval=True \
--eval_split=test

View file

@ -0,0 +1,71 @@
#!/bin/bash
# Data
DATA_ROOT=./
DATA_DIR=${DATA_ROOT}/pretrained_xl/tf_wt103/data
MODEL_DIR=${DATA_ROOT}/pretrained_xl/tf_wt103/model
# Model
DIV_VAL=4
N_LAYER=18
D_MODEL=1024
D_EMBED=1024
N_HEAD=16
D_HEAD=64
D_INNER=4096
# Training
TGT_LEN=256
MEM_LEN=256
BSZ=16
NUM_CORE=2
# Testing
TEST_TGT_LEN=128
TEST_MEM_LEN=1600
TEST_CLAMP_LEN=1000
TEST_CKPT_PATH=${MODEL_DIR}/model.ckpt-0
TEST_BSZ=16
TEST_NUM_CORE=1
echo 'Preprocess test set...'
python data_utils.py \
--data_dir=${DATA_DIR}/ \
--dataset=enwik8 \
--tgt_len=${TEST_TGT_LEN} \
--per_host_test_bsz=${TEST_BSZ} \
--num_passes=1 \
--use_tpu=False
echo 'Run evaluation on test set...'
python train_gpu.py \
--data_dir=${DATA_DIR}/tfrecords \
--record_info_dir=${DATA_DIR}/tfrecords/ \
--corpus_info_path=${DATA_DIR}/corpus-info.json \
--eval_ckpt_path=${TEST_CKPT_PATH} \
--model_dir=EXP-wt103 \
--div_val=${DIV_VAL} \
--untie_r=True \
--proj_share_all_but_first=True \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--dropout=0.0 \
--dropatt=0.0 \
--tgt_len=${TEST_TGT_LEN} \
--mem_len=${TEST_MEM_LEN} \
--clamp_len=${TEST_CLAMP_LEN} \
--same_length=True \
--eval_batch_size=${TEST_BSZ} \
--num_core_per_host=${TEST_NUM_CORE} \
--do_train=False \
--do_eval=True \
--eval_split=test

File diff suppressed because it is too large Load diff

462
transformer-xl/tf/train.py Normal file
View file

@ -0,0 +1,462 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import time
from absl import flags
import absl.logging as _logging # pylint: disable=unused-import
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
from tensorflow.gfile import Exists as exists
import model
import data_utils
import tpu_estimator
import numpy as np
from time import sleep
# TPU parameters
flags.DEFINE_string("master", default=None,
help="master")
flags.DEFINE_string("tpu", default=None,
help="The Cloud TPU to use for training. This should be either the name "
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 url.")
flags.DEFINE_string("gcp_project", default=None,
help="Project name for the Cloud TPU-enabled project. If not specified, "
"we will attempt to automatically detect the GCE project from metadata.")
flags.DEFINE_string("tpu_zone",default=None,
help="GCE zone where the Cloud TPU is located in. If not specified, we "
"will attempt to automatically detect the GCE project from metadata.")
flags.DEFINE_bool("use_tpu", default=True,
help="Use TPUs rather than plain CPUs.")
flags.DEFINE_integer("num_hosts", default=1,
help="number of TPU hosts")
flags.DEFINE_integer("num_core_per_host", default=8,
help="number of cores per host")
# Experiment (data/checkpoint/directory) parameters
flags.DEFINE_string("data_dir", default="",
help="Path to tf-records directory.")
flags.DEFINE_string("record_info_dir", default="",
help="Path to local directory containing filenames.txt.")
flags.DEFINE_string("corpus_info_path", default="",
help="Path to corpus-info.json file.")
flags.DEFINE_string("model_dir", default=None,
help="Estimator model_dir.")
flags.DEFINE_bool("do_eval", default=False,
help="Whether to run eval on the dev set.")
flags.DEFINE_bool("track_mean", default=True,
help="Trace mean loss during training.")
flags.DEFINE_string("eval_ckpt_path", None,
help="Checkpoint path for evaluation."
"If set, model_dir will be ignored."
"If unset, will use the latest ckpt in model_dir.")
flags.DEFINE_string("warm_start_path", None,
help="Checkpoint path for warm start."
"If set, will clear Adam states."
"Note that the new model_dir should be different"
" from warm_start_path.")
# Optimization paramenters
flags.DEFINE_float("learning_rate", default=2.5e-4,
help="Maximum learning rate.")
flags.DEFINE_float("clip", default=0.25,
help="Gradient clipping value.")
# for cosine decay
flags.DEFINE_float("min_lr_ratio", default=0.01,
help="Minimum ratio learning rate.")
flags.DEFINE_integer("warmup_steps", default=0,
help="Number of steps for linear lr warmup.")
# Training parameters
flags.DEFINE_integer("train_batch_size", default=60,
help="Size of train batch.")
flags.DEFINE_integer("eval_batch_size", default=60,
help="Size of valid batch.")
flags.DEFINE_integer("train_steps", default=100000,
help="Total number of training steps.")
flags.DEFINE_integer("iterations", default=500,
help="Number of iterations per repeat loop.")
flags.DEFINE_integer("save_steps", default=10000,
help="number of steps for model checkpointing.")
# Evaluation parameters
flags.DEFINE_integer("max_eval_batch", default=-1,
help="Set -1 to turn off. Only used in test mode.")
flags.DEFINE_bool("do_eval_only", default=False,
help="Run evaluation only.")
flags.DEFINE_integer("start_eval_steps", default=10000,
help="Which checkpoint to start with in `do_eval_only` mode.")
flags.DEFINE_string("eval_split", "valid",
help="Which data split to evaluate.")
# Model paramenters
flags.DEFINE_integer("tgt_len", default=70,
help="Number of steps to predict")
flags.DEFINE_integer("mem_len", default=70,
help="Number of steps to cache")
flags.DEFINE_bool("same_length", default=False,
help="Same length attention")
flags.DEFINE_integer("clamp_len", default=-1,
help="Clamp length")
flags.DEFINE_integer("n_layer", default=6,
help="Number of layers.")
flags.DEFINE_integer("d_model", default=500,
help="Dimension of the model.")
flags.DEFINE_integer("d_embed", default=500,
help="Dimension of the embeddings.")
flags.DEFINE_integer("n_head", default=10,
help="Number of attention heads.")
flags.DEFINE_integer("d_head", default=50,
help="Dimension of each attention head.")
flags.DEFINE_integer("d_inner", default=1000,
help="Dimension of inner hidden size in positionwise feed-forward.")
flags.DEFINE_float("dropout", default=0.1,
help="Dropout rate.")
flags.DEFINE_float("dropatt", default=0.1,
help="Attention dropout rate.")
flags.DEFINE_bool("untie_r", default=False,
help="untie r_w_bias and r_r_bias")
# Adaptive Softmax / Embedding
flags.DEFINE_bool("tie_weight", default=True,
help="Tie embedding and softmax weight.")
flags.DEFINE_integer("div_val", default=1,
help="Divide the embedding size by this val for each bin")
flags.DEFINE_bool("proj_share_all_but_first", default=False,
help="True to share all but first projs, False not to share.")
flags.DEFINE_bool("proj_same_dim", default=True,
help="Project the bin with the same dimension.")
# Parameter initialization
flags.DEFINE_enum("init", default="normal",
enum_values=["normal", "uniform"],
help="Initialization method.")
flags.DEFINE_float("init_std", default=0.02,
help="Initialization std when init is normal.")
flags.DEFINE_float("proj_init_std", default=0.01,
help="Initialization std for embedding projection.")
flags.DEFINE_float("init_range", default=0.1,
help="Initialization std when init is uniform.")
FLAGS = flags.FLAGS
def metric_fn(loss):
"""Evaluation metric Fn which runs on CPU."""
perplexity = tf.exp(tf.reduce_mean(loss))
bpc = tf.reduce_mean(loss) / tf.constant(math.log(2))
return {
"perplexity": tf.metrics.mean(perplexity),
"bpc": tf.metrics.mean(bpc),
}
def get_model_fn(n_token, cutoffs, train_bin_sizes, eval_bin_sizes):
def model_fn(features, labels, mode, params):
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
batch_size = params["batch_size"]
mems = params["cache"]
inp = tf.transpose(features["inputs"], [1, 0])
tgt = tf.transpose(features["labels"], [1, 0])
bin_sizes = train_bin_sizes if is_training else eval_bin_sizes
if bin_sizes:
inp_perms = [tf.transpose(features["inp_mask"], [1, 0])]
tgt_perms = [tf.transpose(features["tgt_mask"], [1, 0])]
head_tgt = tf.transpose(features["head_labels"], [1, 0])
for b in range(len(bin_sizes)):
inp_perm = tf.transpose(features["inp_perm_{}".format(b)], [1, 0, 2])
tgt_perm = tf.transpose(features["tgt_perm_{}".format(b)], [1, 0, 2])
inp_perms.append(inp_perm)
tgt_perms.append(tgt_perm)
else:
inp_perms, tgt_perms, head_tgt = None, None, None
if FLAGS.init == "uniform":
initializer = tf.initializers.random_uniform(
minval=-FLAGS.init_range,
maxval=FLAGS.init_range,
seed=None)
elif FLAGS.init == "normal":
initializer = tf.initializers.random_normal(
stddev=FLAGS.init_std,
seed=None)
proj_initializer = tf.initializers.random_normal(
stddev=FLAGS.proj_init_std,
seed=None)
tie_projs = [False for _ in range(len(cutoffs) + 1)]
if FLAGS.proj_share_all_but_first:
for i in range(1, len(tie_projs)):
tie_projs[i] = True
tf.logging.info("Vocab size : {}".format(n_token))
tf.logging.info("Batch size : {}".format(batch_size))
loss, new_mems = model.transformer(
dec_inp=inp,
target=tgt,
mems=mems,
n_token=n_token,
n_layer=FLAGS.n_layer,
d_model=FLAGS.d_model,
d_embed=FLAGS.d_embed,
n_head=FLAGS.n_head,
d_head=FLAGS.d_head,
d_inner=FLAGS.d_inner,
dropout=FLAGS.dropout,
dropatt=FLAGS.dropatt,
initializer=initializer,
is_training=is_training,
mem_len=FLAGS.mem_len,
cutoffs=cutoffs,
div_val=FLAGS.div_val,
tie_projs=tie_projs,
input_perms=inp_perms,
target_perms=tgt_perms,
head_target=head_tgt,
same_length=FLAGS.same_length,
clamp_len=FLAGS.clamp_len,
use_tpu=FLAGS.use_tpu,
untie_r=FLAGS.untie_r,
proj_same_dim=FLAGS.proj_same_dim)
total_loss = tf.reduce_mean(loss)
if mode == tf.estimator.ModeKeys.EVAL:
if FLAGS.use_tpu:
with tf.colocate_with(total_loss):
total_loss = tf.contrib.tpu.cross_replica_sum(total_loss) \
/ FLAGS.num_hosts / FLAGS.num_core_per_host
metric_loss = tf.tile(tf.reshape(total_loss, [1, 1]), [batch_size, 1])
eval_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=(metric_fn, [metric_loss]))
eval_spec.cache = new_mems
return eval_spec
# Configuring the optimization step.
global_step = tf.train.get_global_step()
# increase the learning rate linearly
if FLAGS.warmup_steps > 0:
warmup_lr = tf.to_float(global_step) / tf.to_float(FLAGS.warmup_steps) \
* FLAGS.learning_rate
else:
warmup_lr = 0.0
# number of parameters
num_params = np.sum([np.prod(v.shape) for v in tf.trainable_variables()])
tf.logging.info("#params: {}".format(num_params))
# format_str = '{{:<{0}s}}\t{{}}'.format(
# max([len(v.name) for v in tf.trainable_variables()]))
# for v in tf.trainable_variables():
# tf.logging.info(format_str.format(v.name, v.get_shape()))
# decay the learning rate using the cosine schedule
decay_lr = tf.train.cosine_decay(
FLAGS.learning_rate,
global_step=global_step-FLAGS.warmup_steps,
decay_steps=FLAGS.train_steps-FLAGS.warmup_steps,
alpha=FLAGS.min_lr_ratio)
learning_rate = tf.where(global_step < FLAGS.warmup_steps,
warmup_lr, decay_lr)
if FLAGS.use_tpu:
optimizer = tf.contrib.tpu.CrossShardOptimizer(
tf.train.AdamOptimizer(learning_rate=learning_rate))
#GradientDescentOptimizer
else:
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
grads_and_vars = optimizer.compute_gradients(total_loss)
gradients, variables = zip(*grads_and_vars)
clipped, _ = tf.clip_by_global_norm(gradients, FLAGS.clip)
train_op = optimizer.apply_gradients(
zip(clipped, variables), global_step=tf.train.get_global_step())
# Constucting TPUEstimatorSpec with cache.
train_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode, loss=total_loss, train_op=train_op)
if FLAGS.mem_len < FLAGS.tgt_len:
new_mems = [new_mems[: FLAGS.mem_len] for mem_t in new_mems]
train_spec.cache = new_mems
return train_spec
return model_fn
def get_cache_fn(mem_len):
def cache_fn(batch_size):
mems = []
for l in xrange(FLAGS.n_layer):
if mem_len > 0:
mems.append(
tf.zeros([mem_len, batch_size, FLAGS.d_model], dtype=tf.float32))
else:
mems.append(tf.zeros([mem_len], dtype=tf.float32))
return mems
return cache_fn
def main(unused_argv):
del unused_argv # Unused
tf.logging.set_verbosity(tf.logging.INFO)
# Get corpus info
corpus_info = data_utils.get_corpus_info(FLAGS.corpus_info_path)
n_token = corpus_info["vocab_size"]
cutoffs = corpus_info["cutoffs"][1:-1]
if FLAGS.save_steps == 0:
FLAGS.save_steps = None
if not FLAGS.do_eval_only:
# Get train input function
train_input_fn, train_record_info = data_utils.get_input_fn(
record_info_dir=FLAGS.record_info_dir,
split="train",
per_host_bsz=FLAGS.train_batch_size // FLAGS.num_hosts,
tgt_len=FLAGS.tgt_len,
num_core_per_host=FLAGS.num_core_per_host,
num_hosts=FLAGS.num_hosts,
use_tpu=FLAGS.use_tpu)
train_bin_sizes = train_record_info["bin_sizes"]
num_train_batch = train_record_info["num_batch"]
# Get train cache function
train_cache_fn = get_cache_fn(FLAGS.mem_len)
else:
train_bin_sizes = []
num_train_batch = None
train_cache_fn = None
if FLAGS.do_eval or FLAGS.do_eval_only:
assert FLAGS.num_hosts == 1
# Get eval input function
eval_input_fn, eval_record_info = data_utils.get_input_fn(
record_info_dir=FLAGS.record_info_dir,
split=FLAGS.eval_split,
per_host_bsz=FLAGS.eval_batch_size // FLAGS.num_hosts,
tgt_len=FLAGS.tgt_len,
num_core_per_host=FLAGS.num_core_per_host,
num_hosts=FLAGS.num_hosts,
use_tpu=FLAGS.use_tpu)
eval_bin_sizes = eval_record_info["bin_sizes"]
num_eval_batch = eval_record_info["num_batch"]
if FLAGS.max_eval_batch > 0:
num_eval_batch = min(FLAGS.max_eval_batch, num_eval_batch)
# Get eval cache function
eval_cache_fn = get_cache_fn(FLAGS.mem_len)
model_fn = get_model_fn(n_token, cutoffs, train_bin_sizes, eval_bin_sizes)
else:
eval_cache_fn = None
model_fn = get_model_fn(n_token, cutoffs, train_bin_sizes, [])
##### Create estimator
# TPU Configuration
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
FLAGS.tpu, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
per_host_input = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
run_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
model_dir=FLAGS.model_dir,
session_config=tf.ConfigProto(
allow_soft_placement=True, log_device_placement=True),
tpu_config=tf.contrib.tpu.TPUConfig(
iterations_per_loop=FLAGS.iterations,
num_shards=FLAGS.num_core_per_host * FLAGS.num_hosts,
per_host_input_for_training=per_host_input),
keep_checkpoint_max=100000, # effectively save all checkpoints
save_checkpoints_secs=None,
save_checkpoints_steps=FLAGS.save_steps
)
# warm start
warm_start_from = None
if FLAGS.warm_start_path is not None:
warm_start_from = tf.estimator.WarmStartSettings(
ckpt_to_initialize_from=FLAGS.warm_start_path)
# TPU Estimator
estimator = tpu_estimator.TPUEstimator(
model_fn=model_fn,
train_cache_fn=train_cache_fn,
eval_cache_fn=eval_cache_fn,
use_tpu=FLAGS.use_tpu,
config=run_config,
params={"data_dir":FLAGS.data_dir, "track_mean":FLAGS.track_mean},
train_batch_size=FLAGS.train_batch_size,
eval_batch_size=FLAGS.eval_batch_size,
warm_start_from=warm_start_from)
if FLAGS.do_eval_only:
if FLAGS.eval_ckpt_path is not None:
ret = estimator.evaluate(input_fn=eval_input_fn, steps=num_eval_batch,
checkpoint_path=FLAGS.eval_ckpt_path)
tf.logging.info("=" * 200)
log_str = "Eval results | "
for key, val in ret.items():
log_str += "{} {} | ".format(key, val)
tf.logging.info(log_str)
tf.logging.info("=" * 200)
else:
ckpt_state = tf.train.get_checkpoint_state(FLAGS.model_dir)
eval_results = []
for eval_checkpoint in ckpt_state.all_model_checkpoint_paths:
if not exists(eval_checkpoint + ".index"): continue
global_step = int(eval_checkpoint.split("-")[-1])
if global_step < FLAGS.start_eval_steps or global_step > FLAGS.train_steps:
continue
ret = estimator.evaluate(input_fn=eval_input_fn, steps=num_eval_batch,
checkpoint_path=eval_checkpoint)
eval_results.append(ret)
eval_results.sort(key = lambda x: x["perplexity"])
tf.logging.info("=" * 200)
log_str = "Best results | "
for key, val in eval_results[0].items():
log_str += "{} {} | ".format(key, val)
tf.logging.info(log_str)
tf.logging.info("=" * 200)
else:
if not FLAGS.do_eval:
estimator.train(input_fn=train_input_fn, steps=FLAGS.train_steps)
else:
for step in range(0, FLAGS.train_steps, num_train_batch):
train_steps = min(FLAGS.train_steps - step, num_train_batch)
estimator.train(input_fn=train_input_fn, steps=train_steps)
estimator.evaluate(input_fn=eval_input_fn, steps=num_eval_batch)
if __name__ == "__main__":
tf.app.run()

View file

@ -0,0 +1,475 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import math
import time
from absl import flags
import absl.logging as _logging # pylint: disable=unused-import
import tensorflow as tf
import model
import data_utils
from gpu_utils import assign_to_gpu, average_grads_and_vars
import numpy as np
# GPU config
flags.DEFINE_integer("num_hosts", default=1,
help="Number of TPU hosts")
flags.DEFINE_integer("num_core_per_host", default=8,
help="Number of cores per host")
# Experiment (data/checkpoint/directory) config
flags.DEFINE_string("data_dir", default="",
help="Path to tf-records directory.")
flags.DEFINE_string("record_info_dir", default="",
help="Path to local directory containing filenames.txt.")
flags.DEFINE_string("corpus_info_path", default="",
help="Path to corpus-info.json file.")
flags.DEFINE_string("model_dir", default=None,
help="Estimator model_dir.")
flags.DEFINE_bool("do_train", default=True,
help="Whether to run training.")
flags.DEFINE_bool("do_eval", default=False,
help="Whether to run eval on the dev set.")
flags.DEFINE_string("eval_ckpt_path", None,
help="Checkpoint path for do_test evaluation."
"If set, model_dir will be ignored."
"If unset, will use the latest ckpt in model_dir.")
flags.DEFINE_string("warm_start_path", None,
help="Checkpoint path for warm start."
"If set, will clear Adam states."
"Note that the new model_dir should be different"
" from warm_start_path.")
# Optimization config
flags.DEFINE_float("learning_rate", default=2.5e-4,
help="Maximum learning rate.")
flags.DEFINE_float("clip", default=0.25,
help="Gradient clipping value.")
# for cosine decay
flags.DEFINE_float("min_lr_ratio", default=0.004,
help="Minimum ratio learning rate.")
flags.DEFINE_integer("warmup_steps", default=0,
help="Number of steps for linear lr warmup.")
# Training config
flags.DEFINE_integer("train_batch_size", default=60,
help="Size of train batch.")
flags.DEFINE_integer("eval_batch_size", default=60,
help="Size of valid batch.")
flags.DEFINE_integer("train_steps", default=100000,
help="Total number of training steps.")
flags.DEFINE_integer("iterations", default=500,
help="Number of iterations per repeat loop.")
flags.DEFINE_integer("save_steps", default=10000,
help="number of steps for model checkpointing.")
# Evaluation config
flags.DEFINE_bool("do_test", default=False,
help="Run on the test set.")
flags.DEFINE_integer("max_eval_batch", default=-1,
help="Set -1 to turn off. Only used in test mode.")
flags.DEFINE_bool("do_eval_only", default=False,
help="Run evaluation only.")
flags.DEFINE_integer("start_eval_steps", default=10000,
help="Which checkpoint to start with in `do_eval_only` mode.")
flags.DEFINE_string("eval_split", "valid",
help="Which data split to evaluate.")
# Model config
flags.DEFINE_integer("tgt_len", default=70,
help="Number of steps to predict")
flags.DEFINE_integer("mem_len", default=70,
help="Number of steps to cache")
flags.DEFINE_bool("same_length", default=False,
help="Same length attention")
flags.DEFINE_integer("clamp_len", default=-1,
help="Clamp length")
flags.DEFINE_integer("n_layer", default=6,
help="Number of layers.")
flags.DEFINE_integer("d_model", default=500,
help="Dimension of the model.")
flags.DEFINE_integer("d_embed", default=500,
help="Dimension of the embeddings.")
flags.DEFINE_integer("n_head", default=10,
help="Number of attention heads.")
flags.DEFINE_integer("d_head", default=50,
help="Dimension of each attention head.")
flags.DEFINE_integer("d_inner", default=1000,
help="Dimension of inner hidden size in positionwise feed-forward.")
flags.DEFINE_float("dropout", default=0.1,
help="Dropout rate.")
flags.DEFINE_float("dropatt", default=0.1,
help="Attention dropout rate.")
flags.DEFINE_bool("untie_r", default=False,
help="untie r_w_bias and r_r_bias")
# Adaptive Softmax / Embedding
flags.DEFINE_bool("tie_weight", default=True,
help="Tie embedding and softmax weight.")
flags.DEFINE_integer("div_val", default=1,
help="Divide the embedding size by this val for each bin")
flags.DEFINE_bool("proj_share_all_but_first", default=False,
help="True to share all but first projs, False not to share.")
flags.DEFINE_bool("proj_same_dim", default=True,
help="Project the bin with the same dimension.")
# Parameter initialization
flags.DEFINE_enum("init", default="normal",
enum_values=["normal", "uniform"],
help="Initialization method.")
flags.DEFINE_float("init_std", default=0.02,
help="Initialization std when init is normal.")
flags.DEFINE_float("proj_init_std", default=0.01,
help="Initialization std for embedding projection.")
flags.DEFINE_float("init_range", default=0.1,
help="Initialization std when init is uniform.")
FLAGS = flags.FLAGS
def get_model_fn(n_token, cutoffs):
def model_fn(inp, tgt, mems, is_training):
inp = tf.transpose(inp, [1, 0])
tgt = tf.transpose(tgt, [1, 0])
if FLAGS.init == "uniform":
initializer = tf.initializers.random_uniform(
minval=-FLAGS.init_range,
maxval=FLAGS.init_range,
seed=None)
elif FLAGS.init == "normal":
initializer = tf.initializers.random_normal(
stddev=FLAGS.init_std,
seed=None)
proj_initializer = tf.initializers.random_normal(
stddev=FLAGS.proj_init_std,
seed=None)
tie_projs = [False for _ in range(len(cutoffs) + 1)]
if FLAGS.proj_share_all_but_first:
for i in range(1, len(tie_projs)):
tie_projs[i] = True
loss, new_mems = model.transformer(
dec_inp=inp,
target=tgt,
mems=mems,
n_token=n_token,
n_layer=FLAGS.n_layer,
d_model=FLAGS.d_model,
d_embed=FLAGS.d_embed,
n_head=FLAGS.n_head,
d_head=FLAGS.d_head,
d_inner=FLAGS.d_inner,
dropout=FLAGS.dropout,
dropatt=FLAGS.dropatt,
initializer=initializer,
proj_initializer=proj_initializer,
is_training=is_training,
mem_len=FLAGS.mem_len,
cutoffs=cutoffs,
div_val=FLAGS.div_val,
tie_projs=tie_projs,
input_perms=None,
target_perms=None,
head_target=None,
same_length=FLAGS.same_length,
clamp_len=FLAGS.clamp_len,
use_tpu=False,
untie_r=FLAGS.untie_r,
proj_same_dim=FLAGS.proj_same_dim)
# number of parameters
num_params = sum([np.prod(v.shape) for v in tf.trainable_variables()])
tf.logging.info('#params: {}'.format(num_params))
# format_str = '{{:<{0}s}}\t{{}}'.format(
# max([len(v.name) for v in tf.trainable_variables()]))
# for v in tf.trainable_variables():
# tf.logging.info(format_str.format(v.name, v.get_shape()))
if is_training:
all_vars = tf.trainable_variables()
grads = tf.gradients(loss, all_vars)
grads_and_vars = list(zip(grads, all_vars))
return loss, new_mems, grads_and_vars
else:
return loss, new_mems
return model_fn
def single_core_graph(n_token, cutoffs, is_training, inp, tgt, mems):
model_fn = get_model_fn(
n_token=n_token,
cutoffs=cutoffs)
model_ret = model_fn(
inp=inp,
tgt=tgt,
mems=mems,
is_training=is_training)
return model_ret
def train(n_token, cutoffs, ps_device):
##### Get input function and model function
train_input_fn, train_record_info = data_utils.get_input_fn(
record_info_dir=FLAGS.record_info_dir,
split="train",
per_host_bsz=FLAGS.train_batch_size,
tgt_len=FLAGS.tgt_len,
num_core_per_host=FLAGS.num_core_per_host,
num_hosts=1,
use_tpu=False)
tf.logging.info("num of batches {}".format(train_record_info["num_batch"]))
##### Create computational graph
train_set = train_input_fn({
"batch_size": FLAGS.train_batch_size,
"data_dir": FLAGS.data_dir})
input_feed, label_feed = train_set.make_one_shot_iterator().get_next()
inputs = tf.split(input_feed, FLAGS.num_core_per_host, 0)
labels = tf.split(label_feed, FLAGS.num_core_per_host, 0)
per_core_bsz = FLAGS.train_batch_size // FLAGS.num_core_per_host
tower_mems, tower_losses, tower_new_mems, tower_grads_and_vars = [], [], [], []
for i in range(FLAGS.num_core_per_host):
reuse = True if i > 0 else None
with tf.device(assign_to_gpu(i, ps_device)), \
tf.variable_scope(tf.get_variable_scope(), reuse=reuse):
mems_i = [tf.placeholder(tf.float32,
[FLAGS.mem_len, per_core_bsz, FLAGS.d_model])
for _ in range(FLAGS.n_layer)]
loss_i, new_mems_i, grads_and_vars_i = single_core_graph(
n_token=n_token,
cutoffs=cutoffs,
is_training=True,
inp=inputs[i],
tgt=labels[i],
mems=mems_i)
tower_mems.append(mems_i)
tower_losses.append(loss_i)
tower_new_mems.append(new_mems_i)
tower_grads_and_vars.append(grads_and_vars_i)
## average losses and gradients across towers
if len(tower_losses) > 1:
loss = tf.add_n(tower_losses) / len(tower_losses)
grads_and_vars = average_grads_and_vars(tower_grads_and_vars)
else:
loss = tower_losses[0]
grads_and_vars = tower_grads_and_vars[0]
grads, all_vars = zip(*grads_and_vars)
## clip gradient
clipped, gnorm = tf.clip_by_global_norm(grads, FLAGS.clip)
grads_and_vars = list(zip(clipped, all_vars))
## configure the optimizer
global_step = tf.train.get_or_create_global_step()
# warmup stage: increase the learning rate linearly
if FLAGS.warmup_steps > 0:
warmup_lr = tf.to_float(global_step) / tf.to_float(FLAGS.warmup_steps) \
* FLAGS.learning_rate
else:
warmup_lr = 0.0
# decay stage: decay the learning rate using the cosine schedule
decay_lr = tf.train.cosine_decay(
FLAGS.learning_rate,
global_step=global_step-FLAGS.warmup_steps,
decay_steps=FLAGS.train_steps-FLAGS.warmup_steps,
alpha=FLAGS.min_lr_ratio)
# choose warmup or decay
learning_rate = tf.where(global_step < FLAGS.warmup_steps,
warmup_lr, decay_lr)
# get the train op
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.apply_gradients(grads_and_vars, global_step)
##### Training loop
tower_mems_np = [
[np.zeros([FLAGS.mem_len, per_core_bsz, FLAGS.d_model], dtype=np.float32)
for layer in range(FLAGS.n_layer)]
for core in range(FLAGS.num_core_per_host)
]
saver = tf.train.Saver()
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
sess.run(tf.global_variables_initializer())
if FLAGS.warm_start_path is not None:
tf.logging.info("warm start from {}".format(FLAGS.warm_start_path))
saver.restore(sess, FLAGS.warm_start_path)
fetches = [loss, tower_new_mems, global_step, gnorm, learning_rate, train_op]
total_loss, prev_step = 0., -1
while True:
feed_dict = {}
for i in range(FLAGS.num_core_per_host):
for m, m_np in zip(tower_mems[i], tower_mems_np[i]):
feed_dict[m] = m_np
fetched = sess.run(fetches, feed_dict=feed_dict)
loss_np, tower_mems_np, curr_step = fetched[:3]
total_loss += loss_np
if curr_step > 0 and curr_step % FLAGS.iterations == 0:
curr_loss = total_loss / (curr_step - prev_step)
tf.logging.info("[{}] | gnorm {:.2f} lr {:8.6f} "
"| loss {:.2f} | pplx {:>7.2f}, bpc {:>7.4f}".format(
curr_step, fetched[-3], fetched[-2],
curr_loss, math.exp(curr_loss), curr_loss / math.log(2)))
total_loss, prev_step = 0., curr_step
if curr_step > 0 and curr_step % FLAGS.save_steps == 0:
save_path = os.path.join(FLAGS.model_dir, "model.ckpt")
saver.save(sess, save_path)
tf.logging.info("Model saved in path: {}".format(save_path))
if curr_step == FLAGS.train_steps:
break
def evaluate(n_token, cutoffs, ps_device):
##### Get input function and model function
eval_input_fn, eval_record_info = data_utils.get_input_fn(
record_info_dir=FLAGS.record_info_dir,
split=FLAGS.eval_split,
per_host_bsz=FLAGS.eval_batch_size,
tgt_len=FLAGS.tgt_len,
num_core_per_host=FLAGS.num_core_per_host,
num_hosts=1,
use_tpu=False)
num_batch = eval_record_info["num_batch"]
if FLAGS.max_eval_batch > 0:
num_batch = FLAGS.max_eval_batch
tf.logging.info("num of batches {}".format(num_batch))
##### Create computational graph
eval_set = eval_input_fn({
"batch_size": FLAGS.eval_batch_size,
"data_dir": FLAGS.data_dir})
input_feed, label_feed = eval_set.make_one_shot_iterator().get_next()
inputs = tf.split(input_feed, FLAGS.num_core_per_host, 0)
labels = tf.split(label_feed, FLAGS.num_core_per_host, 0)
per_core_bsz = FLAGS.eval_batch_size // FLAGS.num_core_per_host
tower_mems, tower_losses, tower_new_mems = [], [], []
for i in range(FLAGS.num_core_per_host):
with tf.device(assign_to_gpu(i, ps_device)), \
tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):
mems_i = [tf.placeholder(tf.float32,
[FLAGS.mem_len, per_core_bsz, FLAGS.d_model])
for _ in range(FLAGS.n_layer)]
loss_i, new_mems_i = single_core_graph(
n_token=n_token,
cutoffs=cutoffs,
is_training=False,
inp=inputs[i],
tgt=labels[i],
mems=mems_i)
tower_mems.append(mems_i)
tower_losses.append(loss_i)
tower_new_mems.append(new_mems_i)
## sum losses across towers
if len(tower_losses) > 1:
loss = tf.add_n(tower_losses) / len(tower_losses)
else:
loss = tower_losses[0]
##### Evaluation loop
tower_mems_np = [
[np.zeros([FLAGS.mem_len, per_core_bsz, FLAGS.d_model], dtype=np.float32)
for layer in range(FLAGS.n_layer)]
for core in range(FLAGS.num_core_per_host)
]
saver = tf.train.Saver()
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
sess.run(tf.global_variables_initializer())
if FLAGS.eval_ckpt_path is None:
eval_ckpt_path = tf.train.latest_checkpoint(FLAGS.model_dir)
else:
eval_ckpt_path = FLAGS.eval_ckpt_path
tf.logging.info("Evaluate {}".format(eval_ckpt_path))
saver.restore(sess, eval_ckpt_path)
fetches = [loss, tower_new_mems, tf.size(label_feed)]
format_str = " >> processing batch {{:{0}d}}/{{:{0}d}} ..".format(
len(str(num_batch)))
total_loss, total_cnt = 0, 0
for step in range(num_batch):
if step % (num_batch // 10) == 0:
tf.logging.info(format_str.format(step, num_batch))
feed_dict = {}
for i in range(FLAGS.num_core_per_host):
for m, m_np in zip(tower_mems[i], tower_mems_np[i]):
feed_dict[m] = m_np
fetched = sess.run(fetches, feed_dict=feed_dict)
loss_np, tower_mems_np, cnt_np = fetched[:3]
total_loss += loss_np * cnt_np
total_cnt += cnt_np
avg_loss = total_loss / total_cnt
tf.logging.info("| loss {:.2f} | pplx {:>7.2f}, bpc {:>7.4f}".format(
avg_loss, math.exp(avg_loss), avg_loss / math.log(2)))
def main(unused_argv):
del unused_argv # Unused
tf.logging.set_verbosity(tf.logging.INFO)
# Get corpus info
corpus_info = data_utils.get_corpus_info(FLAGS.corpus_info_path)
n_token = corpus_info["vocab_size"]
cutoffs = corpus_info["cutoffs"][1:-1]
tf.logging.info("n_token {}".format(n_token))
if FLAGS.do_train:
train(n_token, cutoffs, "/gpu:0")
if FLAGS.do_eval:
evaluate(n_token, cutoffs, "/gpu:0")
if __name__ == "__main__":
tf.app.run()

View file

@ -0,0 +1,170 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import Counter, OrderedDict
import numpy as np
import tensorflow as tf
from tensorflow.gfile import Open as open
from tensorflow.gfile import Exists as exists
class Vocab(object):
def __init__(self, special=[], min_freq=0, max_size=None, lower_case=True,
delimiter=None, vocab_file=None):
self.counter = Counter()
self.special = special
self.min_freq = min_freq
self.max_size = max_size
self.lower_case = lower_case
self.delimiter = delimiter
self.vocab_file = vocab_file
def tokenize(self, line, add_eos=False, add_double_eos=False):
line = line.strip()
# convert to lower case
if self.lower_case:
line = line.lower()
# empty delimiter '' will evaluate False
if self.delimiter == '':
symbols = line
else:
symbols = line.split(self.delimiter)
if add_double_eos: # lm1b
return ['<S>'] + symbols + ['<S>']
elif add_eos:
return symbols + ['<eos>']
else:
return symbols
def count_file(self, path, verbose=False, add_eos=False):
if verbose: print('counting file {} ...'.format(path))
assert exists(path)
sents = []
with open(path, 'r') as f:
for idx, line in enumerate(f):
if verbose and idx > 0 and idx % 500000 == 0:
print(' line {}'.format(idx))
symbols = self.tokenize(line, add_eos=add_eos)
self.counter.update(symbols)
sents.append(symbols)
return sents
def count_sents(self, sents, verbose=False):
"""
sents : a list of sentences, each a list of tokenized symbols
"""
if verbose: print('counting {} sents ...'.format(len(sents)))
for idx, symbols in enumerate(sents):
if verbose and idx > 0 and idx % 500000 == 0:
print(' line {}'.format(idx))
self.counter.update(symbols)
def _build_from_file(self, vocab_file):
self.idx2sym = []
self.sym2idx = OrderedDict()
with open(vocab_file, 'r') as f:
for line in f:
symb = line.strip().split()[0]
self.add_symbol(symb)
self.unk_idx = self.sym2idx['<UNK>']
def build_vocab(self):
if self.vocab_file:
print('building vocab from {}'.format(self.vocab_file))
self._build_from_file(self.vocab_file)
print('final vocab size {}'.format(len(self)))
else:
print('building vocab with min_freq={}, max_size={}'.format(
self.min_freq, self.max_size))
self.idx2sym = []
self.sym2idx = OrderedDict()
for sym in self.special:
self.add_special(sym)
for sym, cnt in self.counter.most_common(self.max_size):
if cnt < self.min_freq: break
self.add_symbol(sym)
print('final vocab size {} from {} unique tokens'.format(
len(self), len(self.counter)))
def encode_file(self, path, ordered=False, verbose=False, add_eos=True,
add_double_eos=False):
if verbose: print('encoding file {} ...'.format(path))
assert exists(path)
encoded = []
with open(path, 'r') as f:
for idx, line in enumerate(f):
if verbose and idx > 0 and idx % 500000 == 0:
print(' line {}'.format(idx))
symbols = self.tokenize(line, add_eos=add_eos,
add_double_eos=add_double_eos)
encoded.append(self.convert_to_nparray(symbols))
if ordered:
encoded = np.concatenate(encoded)
return encoded
def encode_sents(self, sents, ordered=False, verbose=False):
if verbose: print('encoding {} sents ...'.format(len(sents)))
encoded = []
for idx, symbols in enumerate(sents):
if verbose and idx > 0 and idx % 500000 == 0:
print(' line {}'.format(idx))
encoded.append(self.convert_to_nparray(symbols))
if ordered:
encoded = np.concatenate(encoded)
return encoded
def add_special(self, sym):
if sym not in self.sym2idx:
self.idx2sym.append(sym)
self.sym2idx[sym] = len(self.idx2sym) - 1
setattr(self, '{}_idx'.format(sym.strip('<>')), self.sym2idx[sym])
def add_symbol(self, sym):
if sym not in self.sym2idx:
self.idx2sym.append(sym)
self.sym2idx[sym] = len(self.idx2sym) - 1
def get_sym(self, idx):
assert 0 <= idx < len(self), 'Index {} out of range'.format(idx)
return self.idx2sym[idx]
def get_idx(self, sym):
if sym in self.sym2idx:
return self.sym2idx[sym]
else:
assert hasattr(self, 'unk_idx')
return self.sym2idx.get(sym, self.unk_idx)
def get_symbols(self, indices):
return [self.get_sym(idx) for idx in indices]
def get_indices(self, symbols):
return [self.get_idx(sym) for sym in symbols]
def convert_to_nparray(self, symbols):
nparray = np.array(self.get_indices(symbols), dtype=np.int64)
return nparray
def convert_to_sent(self, indices, exclude=None):
if exclude is None:
return ' '.join([self.get_sym(idx) for idx in indices])
else:
return ' '.join([self.get_sym(idx) for idx in indices if idx not in exclude])
def __len__(self):
return len(self.idx2sym)