Compare commits
2 commits
745dfdd586
...
fa72983f52
Author | SHA1 | Date | |
---|---|---|---|
fa72983f52 | |||
33f6d1a261 |
6 changed files with 58 additions and 18 deletions
|
@ -31,14 +31,13 @@ void main()
|
|||
|
||||
float x = r * cos(2.0 * M_PI * animation_seconds / f);
|
||||
float z = r * sin(2.0 * M_PI * animation_seconds / f);
|
||||
vec3 light_pos = vec3(x, h, z);
|
||||
vec3 light_pos = (view * vec4(vec3(x, h, z), 1.0)).xyz;
|
||||
|
||||
// Calculate the light direction
|
||||
vec3 l = normalize(light_pos - sphere_fs_in);
|
||||
vec3 l = normalize(light_pos - view_pos_fs_in.xyz);
|
||||
|
||||
// Calculate the view direction
|
||||
vec3 v = normalize(view_pos_fs_in.xyz - sphere_fs_in);
|
||||
v = normalize(-view_pos_fs_in.xyz);
|
||||
vec3 v = normalize(-view_pos_fs_in.xyz);
|
||||
|
||||
// Calculate the normal direction
|
||||
vec3 n = normalize(normal_fs_in);
|
||||
|
|
|
@ -48,14 +48,13 @@ void main()
|
|||
|
||||
float x = r * cos(2.0 * M_PI * animation_seconds / f);
|
||||
float z = r * sin(2.0 * M_PI * animation_seconds / f);
|
||||
vec3 light_pos = vec3(x, h, z);
|
||||
vec3 light_pos = (view * vec4(vec3(x, h, z), 1.0)).xyz;
|
||||
|
||||
// Calculate the light direction
|
||||
vec3 l = normalize(light_pos - sphere_fs_in);
|
||||
vec3 l = normalize(light_pos - view_pos_fs_in.xyz);
|
||||
|
||||
// Calculate the view direction
|
||||
vec3 v = normalize(view_pos_fs_in.xyz - sphere_fs_in);
|
||||
v = normalize(-view_pos_fs_in.xyz);
|
||||
vec3 v = normalize(-view_pos_fs_in.xyz);
|
||||
|
||||
// Calculate the normal direction
|
||||
vec3 n = normalize(normal_fs_in);
|
||||
|
|
|
@ -11,8 +11,9 @@ vec3 random_direction( vec3 seed)
|
|||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Replace with your code
|
||||
// Poolcoordinaten
|
||||
float theta = 2.0 * M_PI * random2(seed.xy).x;
|
||||
float phi = acos(2.0 * random2(seed.yz).x - 1.0);
|
||||
vec2 rand = random2(seed);
|
||||
float theta = 2.0 * M_PI * rand.x;
|
||||
float phi = acos(2.0 * rand.y - 1.0);
|
||||
// Cartesische coordinaten
|
||||
return vec3(
|
||||
sin(phi) * cos(theta),
|
||||
|
|
|
@ -26,6 +26,42 @@ void main()
|
|||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Replace with your code
|
||||
color = terrain_color * vec3(1,1,1);
|
||||
float r = 10.0;
|
||||
float h = 8.0;
|
||||
float f = 8.0;
|
||||
float p = 1000.0;
|
||||
|
||||
float x = r * cos(2.0 * M_PI * animation_seconds / f);
|
||||
float z = r * sin(2.0 * M_PI * animation_seconds / f);
|
||||
vec3 light_pos = (view * vec4(vec3(x, h, z), 1.0)).xyz;
|
||||
|
||||
// Calculate the light direction
|
||||
vec3 l = normalize(light_pos - view_pos_fs_in.xyz);
|
||||
|
||||
// Calculate the view direction
|
||||
vec3 v = normalize(-view_pos_fs_in.xyz);
|
||||
|
||||
// Calculate the normal direction
|
||||
/* I calculate bumps etc. in the space that has not yet have applied model and view conversion. */
|
||||
vec3 T, B;
|
||||
tangent(s, T, B);
|
||||
|
||||
// Apply the bump map
|
||||
vec3 pos = sphere_fs_in;
|
||||
float eps = 0.0001;
|
||||
vec3 n = cross(
|
||||
(bump_position(is_moon, pos + eps * T) - bump_position(is_moon, pos)) / eps,
|
||||
(bump_position(is_moon, pos + eps * B) - bump_position(is_moon, pos)) / eps);
|
||||
/* Convert the normal to the view space */
|
||||
n = (view * model(is_moon, animation_seconds) * vec4(n, 0.0)).xyz;
|
||||
n = normalize(n);
|
||||
|
||||
// Base colors
|
||||
vec3 ka = vec3(0.1, 0.1, 0.1); // Ambient color
|
||||
vec3 kd = is_moon ? vec3(0.5, 0.45, 0.5) : vec3(0.2, 0.3, 0.8); // Diffuse color
|
||||
vec3 ks = vec3(1.0, 1.0, 1.0); // Specular color
|
||||
|
||||
// Compute the Blinn-Phong shading
|
||||
color = blinn_phong(ka, kd * terrain_color, ks, p, n, v, l);
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
}
|
||||
|
|
|
@ -15,6 +15,7 @@ vec3 bump_position(bool is_moon , vec3 s)
|
|||
{
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Replace with your code
|
||||
return s;
|
||||
/* p' = p + bump * n but on a unit sphere object */
|
||||
return s + bump_height(is_moon, s) * s;
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
}
|
||||
|
|
|
@ -6,12 +6,16 @@
|
|||
// N 3D unit normal vector
|
||||
// Outputs:
|
||||
// T 3D unit tangent vector
|
||||
// B 3D unit bitangent vector
|
||||
// B 3D unit bitangent vectors
|
||||
void tangent(in vec3 N, out vec3 T, out vec3 B)
|
||||
{
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Replace with your code
|
||||
T = vec3(1,0,0);
|
||||
B = vec3(0,1,0);
|
||||
// Calculate a vector that is perpendicular to N
|
||||
vec3 doesnotmatter = abs(N.y) < 0.999 ? vec3(0,1,0) : vec3(1,0,0);
|
||||
T = normalize(cross(doesnotmatter, N));
|
||||
// Now T is perpendicular to N
|
||||
// Take B as the cross product of N and T, to make it perpendicular to both
|
||||
B = cross(N, T);
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
}
|
||||
|
|
Reference in a new issue