feat: Intersect with Triangle

This commit is contained in:
Tibo De Peuter 2024-10-05 21:20:24 +02:00
parent 08c5c9e8da
commit 38e185a3ef
Signed by: tdpeuter
GPG key ID: 38297DE43F75FFE2

View file

@ -3,12 +3,57 @@
#include <Eigen/Geometry> // hint #include <Eigen/Geometry> // hint
bool Triangle::intersect( bool Triangle::intersect(
const Ray & ray, const double min_t, double & t, Eigen::Vector3d & n) const const Ray & ray, const double min_t, double & t, Eigen::Vector3d & n) const
{ {
//////////////////////////////////////////////////////////////////////////// /* Based on
// Replace with your code here: * Fundamentals in Computer Graphics - Fourth Edition, Chapter 4.4.2. Ray-Triangle Intersection.
return false; * Steve Marschner & Peter Shirley
//////////////////////////////////////////////////////////////////////////// */
}
Eigen::Vector3d a = std::get<0>(corners);
Eigen::Vector3d b = std::get<1>(corners);
Eigen::Vector3d c = std::get<2>(corners);
Eigen::Vector3d e = ray.origin;
Eigen::Vector3d d = ray.direction;
/* Using Cramer's rule. */
/* Calculate the determinant of A. */
Eigen::Matrix3d A;
A.col(0) = a - b;
A.col(1) = a - c;
A.col(2) = d;
double determinant_A = A.determinant();
Eigen::Matrix3d t_matrix;
t_matrix.col(0) = a - b;
t_matrix.col(1) = a - c;
t_matrix.col(2) = a - e;
t = t_matrix.determinant() / determinant_A;
if (t < min_t) return false;
Eigen::Matrix3d gamma_matrix;
gamma_matrix.col(0) = a - b;
gamma_matrix.col(1) = a - e;
gamma_matrix.col(2) = d;
double gamma = gamma_matrix.determinant() / determinant_A;
if (gamma < 0 || gamma > 1) return false;
Eigen::Matrix3d beta_matrix;
beta_matrix.col(0) = a - e;
beta_matrix.col(1) = a - c;
beta_matrix.col(2) = d;
double beta = beta_matrix.determinant() / determinant_A;
if (beta < 0 || beta + gamma > 1) return false;
/* Calculate the surface normal vector using the cross product of two edges.
* See https://en.wikipedia.org/wiki/Cross_product#Computational_geometry */
Eigen::Vector3d edge1 = a - b;
Eigen::Vector3d edge2 = a - c;
n = edge1.cross(edge2).normalized(); /* Don't forget to normalize the vector. */
return true;
}