forked from open-webui/open-webui
		
	
		
			
				
	
	
		
			84 lines
		
	
	
	
		
			3.1 KiB
		
	
	
	
		
			Docker
		
	
	
	
	
	
			
		
		
	
	
			84 lines
		
	
	
	
		
			3.1 KiB
		
	
	
	
		
			Docker
		
	
	
	
	
	
| # syntax=docker/dockerfile:1
 | |
| 
 | |
| FROM node:alpine as build
 | |
| 
 | |
| WORKDIR /app
 | |
| 
 | |
| # wget embedding model weight from alpine (does not exist from slim-buster)
 | |
| RUN wget "https://chroma-onnx-models.s3.amazonaws.com/all-MiniLM-L6-v2/onnx.tar.gz" -O - | \
 | |
|     tar -xzf - -C /app
 | |
| 
 | |
| COPY package.json package-lock.json ./
 | |
| RUN npm ci
 | |
| 
 | |
| COPY . .
 | |
| RUN npm run build
 | |
| 
 | |
| 
 | |
| FROM python:3.11-slim-bookworm as base
 | |
| 
 | |
| ENV ENV=prod
 | |
| ENV PORT ""
 | |
| 
 | |
| ENV OLLAMA_BASE_URL "/ollama"
 | |
| 
 | |
| ENV OPENAI_API_BASE_URL ""
 | |
| ENV OPENAI_API_KEY ""
 | |
| 
 | |
| ENV WEBUI_SECRET_KEY ""
 | |
| 
 | |
| ENV SCARF_NO_ANALYTICS true
 | |
| ENV DO_NOT_TRACK true
 | |
| 
 | |
| ######## Preloaded models ########
 | |
| # whisper TTS Settings
 | |
| ENV WHISPER_MODEL="base"
 | |
| ENV WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models"
 | |
| 
 | |
| # RAG Embedding Model Settings
 | |
| # any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers
 | |
| # Leaderboard: https://huggingface.co/spaces/mteb/leaderboard 
 | |
| # for better persormance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB)
 | |
| # IMPORTANT: If you change the default model (all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them.
 | |
| ENV RAG_EMBEDDING_MODEL="all-MiniLM-L6-v2"
 | |
| # device type for whisper tts and embbeding models - "cpu" (default), "cuda" (nvidia gpu and CUDA required) or "mps" (apple silicon) - choosing this right can lead to better performance
 | |
| ENV RAG_EMBEDDING_MODEL_DEVICE_TYPE="cpu"
 | |
| ENV RAG_EMBEDDING_MODEL_DIR="/app/backend/data/cache/embedding/models"
 | |
| ENV SENTENCE_TRANSFORMERS_HOME $RAG_EMBEDDING_MODEL_DIR
 | |
| 
 | |
| ######## Preloaded models ########
 | |
| 
 | |
| WORKDIR /app/backend
 | |
| 
 | |
| # install python dependencies
 | |
| COPY ./backend/requirements.txt ./requirements.txt
 | |
| 
 | |
| RUN apt-get update && apt-get install ffmpeg libsm6 libxext6  -y
 | |
| 
 | |
| RUN pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir
 | |
| RUN pip3 install -r requirements.txt --no-cache-dir
 | |
| 
 | |
| # Install pandoc and netcat
 | |
| # RUN python -c "import pypandoc; pypandoc.download_pandoc()"
 | |
| RUN apt-get update \
 | |
|     && apt-get install -y pandoc netcat-openbsd \
 | |
|     && rm -rf /var/lib/apt/lists/*
 | |
| 
 | |
| # preload embedding model
 | |
| RUN python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device=os.environ['RAG_EMBEDDING_MODEL_DEVICE_TYPE'])"
 | |
| # preload tts model
 | |
| RUN python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='auto', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"
 | |
| 
 | |
| # copy embedding weight from build
 | |
| RUN mkdir -p /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2
 | |
| COPY --from=build /app/onnx /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2/onnx
 | |
| 
 | |
| # copy built frontend files
 | |
| COPY --from=build /app/build /app/build
 | |
| COPY --from=build /app/CHANGELOG.md /app/CHANGELOG.md
 | |
| COPY --from=build /app/package.json /app/package.json
 | |
| 
 | |
| # copy backend files
 | |
| COPY ./backend .
 | |
| 
 | |
| CMD [ "bash", "start.sh"]
 | 
