# syntax=docker/dockerfile:1 # Initialize device type args # use buiild args in the docker build commmand with --build-arg="BUILDARG=true" ARG USE_CUDA=false ARG USE_MPS=false ARG INCLUDE_OLLAMA=false ######## WebUI frontend ######## FROM node:21-alpine3.19 as build WORKDIR /app #RUN apt-get update \ # && apt-get install -y --no-install-recommends wget \ # # cleanup # && rm -rf /var/lib/apt/lists/* # wget embedding model weight from alpine (does not exist from slim-buster) #RUN wget "https://chroma-onnx-models.s3.amazonaws.com/all-MiniLM-L6-v2/onnx.tar.gz" -O - | \ # tar -xzf - -C /app COPY package.json package-lock.json ./ RUN npm ci COPY . . RUN npm run build ######## WebUI backend ######## FROM python:3.11-slim-bookworm as base # Use args ARG USE_CUDA ARG USE_MPS ARG INCLUDE_OLLAMA ## Basis ## ENV ENV=prod \ PORT=8080 \ INCLUDE_OLLAMA_ENV=${INCLUDE_OLLAMA} ## Basis URL Config ## ENV OLLAMA_BASE_URL="/ollama" \ OPENAI_API_BASE_URL="" ## API Key and Security Config ## ENV OPENAI_API_KEY="" \ WEBUI_SECRET_KEY="" \ SCARF_NO_ANALYTICS=true \ DO_NOT_TRACK=true #### Preloaded models ######################################################### ## whisper TTS Settings ## ENV WHISPER_MODEL="base" \ WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models" ## RAG Embedding Model Settings ## # any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers # Leaderboard: https://huggingface.co/spaces/mteb/leaderboard # for better performance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB) # IMPORTANT: If you change the default model (all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them. ENV RAG_EMBEDDING_MODEL="all-MiniLM-L6-v2" \ RAG_EMBEDDING_MODEL_DIR="/app/backend/data/cache/embedding/models" \ SENTENCE_TRANSFORMERS_HOME="/app/backend/data/cache/embedding/models" \ # device type for whisper tts and embbeding models - "cpu" (default) or "mps" (apple silicon) - choosing this right can lead to better performance # Important: # If you want to use CUDA you need to install the nvidia-container-toolkit (https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) # you can set this to "cuda" but its recomended to use --build-arg CUDA_ENABLED=true flag when building the image RAG_EMBEDDING_MODEL_DEVICE_TYPE="cpu" \ DEVICE_COMPUTE_TYPE="int8" # device type for whisper tts and embbeding models - "cpu" (default), "cuda" (nvidia gpu and CUDA required) or "mps" (apple silicon) - choosing this right can lead to better performance #### Preloaded models ########################################################## WORKDIR /app/backend # install python dependencies COPY ./backend/requirements.txt ./requirements.txt RUN if [ "$USE_CUDA" = "true" ]; then \ export DEVICE_TYPE="cuda" && \ pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117 --no-cache-dir && \ pip3 install -r requirements.txt --no-cache-dir; \ elif [ "$USE_MPS" = "true" ]; then \ export DEVICE_TYPE="mps" && \ pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && \ pip3 install -r requirements.txt --no-cache-dir && \ python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" && \ python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device=os.environ['DEVICE_TYPE'])"; \ else \ export DEVICE_TYPE="cpu" && \ pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && \ pip3 install -r requirements.txt --no-cache-dir && \ python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" && \ python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device=os.environ['DEVICE_TYPE'])"; \ fi RUN if [ "$INCLUDE_OLLAMA" = "true" ]; then \ apt-get update && \ # Install pandoc and netcat apt-get install -y --no-install-recommends pandoc netcat-openbsd && \ # for RAG OCR apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && \ # install helper tools apt-get install -y --no-install-recommends curl && \ # install ollama curl -fsSL https://ollama.com/install.sh | sh && \ # cleanup rm -rf /var/lib/apt/lists/*; \ else \ apt-get update && \ # Install pandoc and netcat apt-get install -y --no-install-recommends pandoc netcat-openbsd && \ # for RAG OCR apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && \ # cleanup rm -rf /var/lib/apt/lists/*; \ fi # copy embedding weight from build # RUN mkdir -p /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2 # COPY --from=build /app/onnx /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2/onnx # copy built frontend files COPY --from=build /app/build /app/build COPY --from=build /app/CHANGELOG.md /app/CHANGELOG.md COPY --from=build /app/package.json /app/package.json # copy backend files COPY ./backend . EXPOSE 8080 CMD [ "bash", "start.sh"]