import os import sys import logging import chromadb from chromadb import Settings from base64 import b64encode from bs4 import BeautifulSoup from pathlib import Path import json import yaml import markdown import requests import shutil from secrets import token_bytes from constants import ERROR_MESSAGES #################################### # LOGGING #################################### log_levels = ["CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG"] GLOBAL_LOG_LEVEL = os.environ.get("GLOBAL_LOG_LEVEL", "").upper() if GLOBAL_LOG_LEVEL in log_levels: logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL, force=True) else: GLOBAL_LOG_LEVEL = "INFO" log = logging.getLogger(__name__) log.info(f"GLOBAL_LOG_LEVEL: {GLOBAL_LOG_LEVEL}") log_sources = [ "AUDIO", "COMFYUI", "CONFIG", "DB", "IMAGES", "LITELLM", "MAIN", "MODELS", "OLLAMA", "OPENAI", "RAG", "WEBHOOK", ] SRC_LOG_LEVELS = {} for source in log_sources: log_env_var = source + "_LOG_LEVEL" SRC_LOG_LEVELS[source] = os.environ.get(log_env_var, "").upper() if SRC_LOG_LEVELS[source] not in log_levels: SRC_LOG_LEVELS[source] = GLOBAL_LOG_LEVEL log.info(f"{log_env_var}: {SRC_LOG_LEVELS[source]}") log.setLevel(SRC_LOG_LEVELS["CONFIG"]) #################################### # Load .env file #################################### try: from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv("../.env")) except ImportError: log.warning("dotenv not installed, skipping...") WEBUI_NAME = os.environ.get("WEBUI_NAME", "Open WebUI") if WEBUI_NAME != "Open WebUI": WEBUI_NAME += " (Open WebUI)" WEBUI_FAVICON_URL = "https://openwebui.com/favicon.png" #################################### # ENV (dev,test,prod) #################################### ENV = os.environ.get("ENV", "dev") try: with open(f"../package.json", "r") as f: PACKAGE_DATA = json.load(f) except: PACKAGE_DATA = {"version": "0.0.0"} VERSION = PACKAGE_DATA["version"] # Function to parse each section def parse_section(section): items = [] for li in section.find_all("li"): # Extract raw HTML string raw_html = str(li) # Extract text without HTML tags text = li.get_text(separator=" ", strip=True) # Split into title and content parts = text.split(": ", 1) title = parts[0].strip() if len(parts) > 1 else "" content = parts[1].strip() if len(parts) > 1 else text items.append({"title": title, "content": content, "raw": raw_html}) return items try: with open("../CHANGELOG.md", "r") as file: changelog_content = file.read() except: changelog_content = "" # Convert markdown content to HTML html_content = markdown.markdown(changelog_content) # Parse the HTML content soup = BeautifulSoup(html_content, "html.parser") # Initialize JSON structure changelog_json = {} # Iterate over each version for version in soup.find_all("h2"): version_number = version.get_text().strip().split(" - ")[0][1:-1] # Remove brackets date = version.get_text().strip().split(" - ")[1] version_data = {"date": date} # Find the next sibling that is a h3 tag (section title) current = version.find_next_sibling() while current and current.name != "h2": if current.name == "h3": section_title = current.get_text().lower() # e.g., "added", "fixed" section_items = parse_section(current.find_next_sibling("ul")) version_data[section_title] = section_items # Move to the next element current = current.find_next_sibling() changelog_json[version_number] = version_data CHANGELOG = changelog_json #################################### # DATA/FRONTEND BUILD DIR #################################### DATA_DIR = str(Path(os.getenv("DATA_DIR", "./data")).resolve()) FRONTEND_BUILD_DIR = str(Path(os.getenv("FRONTEND_BUILD_DIR", "../build"))) try: with open(f"{DATA_DIR}/config.json", "r") as f: CONFIG_DATA = json.load(f) except: CONFIG_DATA = {} #################################### # Static DIR #################################### STATIC_DIR = str(Path(os.getenv("STATIC_DIR", "./static")).resolve()) shutil.copyfile(f"{FRONTEND_BUILD_DIR}/favicon.png", f"{STATIC_DIR}/favicon.png") #################################### # CUSTOM_NAME #################################### CUSTOM_NAME = os.environ.get("CUSTOM_NAME", "") if CUSTOM_NAME: try: r = requests.get(f"https://api.openwebui.com/api/v1/custom/{CUSTOM_NAME}") data = r.json() if r.ok: if "logo" in data: WEBUI_FAVICON_URL = url = ( f"https://api.openwebui.com{data['logo']}" if data["logo"][0] == "/" else data["logo"] ) r = requests.get(url, stream=True) if r.status_code == 200: with open(f"{STATIC_DIR}/favicon.png", "wb") as f: r.raw.decode_content = True shutil.copyfileobj(r.raw, f) WEBUI_NAME = data["name"] except Exception as e: log.exception(e) pass #################################### # File Upload DIR #################################### UPLOAD_DIR = f"{DATA_DIR}/uploads" Path(UPLOAD_DIR).mkdir(parents=True, exist_ok=True) #################################### # Cache DIR #################################### CACHE_DIR = f"{DATA_DIR}/cache" Path(CACHE_DIR).mkdir(parents=True, exist_ok=True) #################################### # Docs DIR #################################### DOCS_DIR = os.getenv("DOCS_DIR", f"{DATA_DIR}/docs") Path(DOCS_DIR).mkdir(parents=True, exist_ok=True) #################################### # LITELLM_CONFIG #################################### def create_config_file(file_path): directory = os.path.dirname(file_path) # Check if directory exists, if not, create it if not os.path.exists(directory): os.makedirs(directory) # Data to write into the YAML file config_data = { "general_settings": {}, "litellm_settings": {}, "model_list": [], "router_settings": {}, } # Write data to YAML file with open(file_path, "w") as file: yaml.dump(config_data, file) LITELLM_CONFIG_PATH = f"{DATA_DIR}/litellm/config.yaml" if not os.path.exists(LITELLM_CONFIG_PATH): log.info("Config file doesn't exist. Creating...") create_config_file(LITELLM_CONFIG_PATH) log.info("Config file created successfully.") #################################### # OLLAMA_BASE_URL #################################### OLLAMA_API_BASE_URL = os.environ.get( "OLLAMA_API_BASE_URL", "http://localhost:11434/api" ) OLLAMA_BASE_URL = os.environ.get("OLLAMA_BASE_URL", "") K8S_FLAG = os.environ.get("K8S_FLAG", "") USE_OLLAMA_DOCKER = os.environ.get("USE_OLLAMA_DOCKER", "false") if OLLAMA_BASE_URL == "" and OLLAMA_API_BASE_URL != "": OLLAMA_BASE_URL = ( OLLAMA_API_BASE_URL[:-4] if OLLAMA_API_BASE_URL.endswith("/api") else OLLAMA_API_BASE_URL ) if ENV == "prod": if OLLAMA_BASE_URL == "/ollama" and not K8S_FLAG: if USE_OLLAMA_DOCKER.lower() == "true": # if you use all-in-one docker container (Open WebUI + Ollama) # with the docker build arg USE_OLLAMA=true (--build-arg="USE_OLLAMA=true") this only works with http://localhost:11434 OLLAMA_BASE_URL = "http://localhost:11434" else: OLLAMA_BASE_URL = "http://host.docker.internal:11434" elif K8S_FLAG: OLLAMA_BASE_URL = "http://ollama-service.open-webui.svc.cluster.local:11434" OLLAMA_BASE_URLS = os.environ.get("OLLAMA_BASE_URLS", "") OLLAMA_BASE_URLS = OLLAMA_BASE_URLS if OLLAMA_BASE_URLS != "" else OLLAMA_BASE_URL OLLAMA_BASE_URLS = [url.strip() for url in OLLAMA_BASE_URLS.split(";")] #################################### # OPENAI_API #################################### OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "") OPENAI_API_BASE_URL = os.environ.get("OPENAI_API_BASE_URL", "") if OPENAI_API_BASE_URL == "": OPENAI_API_BASE_URL = "https://api.openai.com/v1" OPENAI_API_KEYS = os.environ.get("OPENAI_API_KEYS", "") OPENAI_API_KEYS = OPENAI_API_KEYS if OPENAI_API_KEYS != "" else OPENAI_API_KEY OPENAI_API_KEYS = [url.strip() for url in OPENAI_API_KEYS.split(";")] OPENAI_API_BASE_URLS = os.environ.get("OPENAI_API_BASE_URLS", "") OPENAI_API_BASE_URLS = ( OPENAI_API_BASE_URLS if OPENAI_API_BASE_URLS != "" else OPENAI_API_BASE_URL ) OPENAI_API_BASE_URLS = [ url.strip() if url != "" else "https://api.openai.com/v1" for url in OPENAI_API_BASE_URLS.split(";") ] OPENAI_API_KEY = "" try: OPENAI_API_KEY = OPENAI_API_KEYS[ OPENAI_API_BASE_URLS.index("https://api.openai.com/v1") ] except: pass OPENAI_API_BASE_URL = "https://api.openai.com/v1" #################################### # WEBUI #################################### ENABLE_SIGNUP = os.environ.get("ENABLE_SIGNUP", "True").lower() == "true" DEFAULT_MODELS = os.environ.get("DEFAULT_MODELS", None) DEFAULT_PROMPT_SUGGESTIONS = ( CONFIG_DATA["ui"]["prompt_suggestions"] if "ui" in CONFIG_DATA and "prompt_suggestions" in CONFIG_DATA["ui"] and type(CONFIG_DATA["ui"]["prompt_suggestions"]) is list else [ { "title": ["Help me study", "vocabulary for a college entrance exam"], "content": "Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option.", }, { "title": ["Give me ideas", "for what to do with my kids' art"], "content": "What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter.", }, { "title": ["Tell me a fun fact", "about the Roman Empire"], "content": "Tell me a random fun fact about the Roman Empire", }, { "title": ["Show me a code snippet", "of a website's sticky header"], "content": "Show me a code snippet of a website's sticky header in CSS and JavaScript.", }, ] ) DEFAULT_USER_ROLE = os.getenv("DEFAULT_USER_ROLE", "pending") USER_PERMISSIONS_CHAT_DELETION = ( os.environ.get("USER_PERMISSIONS_CHAT_DELETION", "True").lower() == "true" ) USER_PERMISSIONS = {"chat": {"deletion": USER_PERMISSIONS_CHAT_DELETION}} ENABLE_MODEL_FILTER = os.environ.get("ENABLE_MODEL_FILTER", "False").lower() == "true" MODEL_FILTER_LIST = os.environ.get("MODEL_FILTER_LIST", "") MODEL_FILTER_LIST = [model.strip() for model in MODEL_FILTER_LIST.split(";")] WEBHOOK_URL = os.environ.get("WEBHOOK_URL", "") ENABLE_ADMIN_EXPORT = os.environ.get("ENABLE_ADMIN_EXPORT", "True").lower() == "true" #################################### # WEBUI_VERSION #################################### WEBUI_VERSION = os.environ.get("WEBUI_VERSION", "v1.0.0-alpha.100") #################################### # WEBUI_AUTH (Required for security) #################################### WEBUI_AUTH = True WEBUI_AUTH_TRUSTED_EMAIL_HEADER = os.environ.get( "WEBUI_AUTH_TRUSTED_EMAIL_HEADER", None ) #################################### # WEBUI_SECRET_KEY #################################### WEBUI_SECRET_KEY = os.environ.get( "WEBUI_SECRET_KEY", os.environ.get( "WEBUI_JWT_SECRET_KEY", "t0p-s3cr3t" ), # DEPRECATED: remove at next major version ) if WEBUI_AUTH and WEBUI_SECRET_KEY == "": raise ValueError(ERROR_MESSAGES.ENV_VAR_NOT_FOUND) #################################### # RAG #################################### CHROMA_DATA_PATH = f"{DATA_DIR}/vector_db" CHROMA_TENANT = os.environ.get("CHROMA_TENANT", chromadb.DEFAULT_TENANT) CHROMA_DATABASE = os.environ.get("CHROMA_DATABASE", chromadb.DEFAULT_DATABASE) CHROMA_HTTP_HOST = os.environ.get("CHROMA_HTTP_HOST", "") CHROMA_HTTP_PORT = int(os.environ.get("CHROMA_HTTP_PORT", "8000")) # Comma-separated list of header=value pairs CHROMA_HTTP_HEADERS = os.environ.get("CHROMA_HTTP_HEADERS", "") if CHROMA_HTTP_HEADERS: CHROMA_HTTP_HEADERS = dict( [pair.split("=") for pair in CHROMA_HTTP_HEADERS.split(",")] ) else: CHROMA_HTTP_HEADERS = None CHROMA_HTTP_SSL = os.environ.get("CHROMA_HTTP_SSL", "false").lower() == "true" # this uses the model defined in the Dockerfile ENV variable. If you dont use docker or docker based deployments such as k8s, the default embedding model will be used (sentence-transformers/all-MiniLM-L6-v2) RAG_TOP_K = int(os.environ.get("RAG_TOP_K", "5")) RAG_RELEVANCE_THRESHOLD = float(os.environ.get("RAG_RELEVANCE_THRESHOLD", "0.0")) ENABLE_RAG_HYBRID_SEARCH = ( os.environ.get("ENABLE_RAG_HYBRID_SEARCH", "").lower() == "true" ) RAG_EMBEDDING_ENGINE = os.environ.get("RAG_EMBEDDING_ENGINE", "") PDF_EXTRACT_IMAGES = os.environ.get("PDF_EXTRACT_IMAGES", "False").lower() == "true" RAG_EMBEDDING_MODEL = os.environ.get( "RAG_EMBEDDING_MODEL", "sentence-transformers/all-MiniLM-L6-v2" ) log.info(f"Embedding model set: {RAG_EMBEDDING_MODEL}"), RAG_EMBEDDING_MODEL_AUTO_UPDATE = ( os.environ.get("RAG_EMBEDDING_MODEL_AUTO_UPDATE", "").lower() == "true" ) RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE = ( os.environ.get("RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE", "").lower() == "true" ) RAG_RERANKING_MODEL = os.environ.get("RAG_RERANKING_MODEL", "") if not RAG_RERANKING_MODEL == "": log.info(f"Reranking model set: {RAG_RERANKING_MODEL}"), RAG_RERANKING_MODEL_AUTO_UPDATE = ( os.environ.get("RAG_RERANKING_MODEL_AUTO_UPDATE", "").lower() == "true" ) RAG_RERANKING_MODEL_TRUST_REMOTE_CODE = ( os.environ.get("RAG_RERANKING_MODEL_TRUST_REMOTE_CODE", "").lower() == "true" ) # device type embedding models - "cpu" (default), "cuda" (nvidia gpu required) or "mps" (apple silicon) - choosing this right can lead to better performance USE_CUDA = os.environ.get("USE_CUDA_DOCKER", "false") if USE_CUDA.lower() == "true": DEVICE_TYPE = "cuda" else: DEVICE_TYPE = "cpu" if CHROMA_HTTP_HOST != "": CHROMA_CLIENT = chromadb.HttpClient( host=CHROMA_HTTP_HOST, port=CHROMA_HTTP_PORT, headers=CHROMA_HTTP_HEADERS, ssl=CHROMA_HTTP_SSL, tenant=CHROMA_TENANT, database=CHROMA_DATABASE, settings=Settings(allow_reset=True, anonymized_telemetry=False), ) else: CHROMA_CLIENT = chromadb.PersistentClient( path=CHROMA_DATA_PATH, settings=Settings(allow_reset=True, anonymized_telemetry=False), tenant=CHROMA_TENANT, database=CHROMA_DATABASE, ) CHUNK_SIZE = int(os.environ.get("CHUNK_SIZE", "1500")) CHUNK_OVERLAP = int(os.environ.get("CHUNK_OVERLAP", "100")) DEFAULT_RAG_TEMPLATE = """Use the following context as your learned knowledge, inside XML tags. [context] When answer to user: - If you don't know, just say that you don't know. - If you don't know when you are not sure, ask for clarification. Avoid mentioning that you obtained the information from the context. And answer according to the language of the user's question. Given the context information, answer the query. Query: [query]""" RAG_TEMPLATE = os.environ.get("RAG_TEMPLATE", DEFAULT_RAG_TEMPLATE) RAG_OPENAI_API_BASE_URL = os.getenv("RAG_OPENAI_API_BASE_URL", OPENAI_API_BASE_URL) RAG_OPENAI_API_KEY = os.getenv("RAG_OPENAI_API_KEY", OPENAI_API_KEY) #################################### # Transcribe #################################### WHISPER_MODEL = os.getenv("WHISPER_MODEL", "base") WHISPER_MODEL_DIR = os.getenv("WHISPER_MODEL_DIR", f"{CACHE_DIR}/whisper/models") WHISPER_MODEL_AUTO_UPDATE = ( os.environ.get("WHISPER_MODEL_AUTO_UPDATE", "").lower() == "true" ) #################################### # Images #################################### IMAGES_GENERATION_ENGINE = os.getenv("IMAGES_GENERATION_ENGINE", "") ENABLE_IMAGE_GENERATION = ( os.environ.get("ENABLE_IMAGE_GENERATION", "").lower() == "true" ) AUTOMATIC1111_BASE_URL = os.getenv("AUTOMATIC1111_BASE_URL", "") COMFYUI_BASE_URL = os.getenv("COMFYUI_BASE_URL", "") IMAGES_OPENAI_API_BASE_URL = os.getenv( "IMAGES_OPENAI_API_BASE_URL", OPENAI_API_BASE_URL ) IMAGES_OPENAI_API_KEY = os.getenv("IMAGES_OPENAI_API_KEY", OPENAI_API_KEY) IMAGE_SIZE = os.getenv("IMAGE_SIZE", "512x512") IMAGE_STEPS = int(os.getenv("IMAGE_STEPS", 50)) IMAGES_MODEL = os.getenv("IMAGES_MODEL", "") #################################### # Audio #################################### AUDIO_OPENAI_API_BASE_URL = os.getenv("AUDIO_OPENAI_API_BASE_URL", OPENAI_API_BASE_URL) AUDIO_OPENAI_API_KEY = os.getenv("AUDIO_OPENAI_API_KEY", OPENAI_API_KEY) #################################### # LiteLLM #################################### ENABLE_LITELLM = os.environ.get("ENABLE_LITELLM", "True").lower() == "true" LITELLM_PROXY_PORT = int(os.getenv("LITELLM_PROXY_PORT", "14365")) if LITELLM_PROXY_PORT < 0 or LITELLM_PROXY_PORT > 65535: raise ValueError("Invalid port number for LITELLM_PROXY_PORT") LITELLM_PROXY_HOST = os.getenv("LITELLM_PROXY_HOST", "127.0.0.1") #################################### # Database #################################### DATABASE_URL = os.environ.get("DATABASE_URL", f"sqlite:///{DATA_DIR}/webui.db")