feat: move to native sentence_transformer

This commit is contained in:
Steven Kreitzer 2024-04-22 13:27:43 -05:00
parent 22c50f62cb
commit f3e5700d49
7 changed files with 153 additions and 268 deletions

View file

@ -13,7 +13,6 @@ import os, shutil, logging, re
from pathlib import Path
from typing import List
from chromadb.utils import embedding_functions
from chromadb.utils.batch_utils import create_batches
from langchain_community.document_loaders import (
@ -38,6 +37,7 @@ import mimetypes
import uuid
import json
import sentence_transformers
from apps.ollama.main import generate_ollama_embeddings, GenerateEmbeddingsForm
@ -48,11 +48,8 @@ from apps.web.models.documents import (
)
from apps.rag.utils import (
query_doc,
query_embeddings_doc,
query_collection,
query_embeddings_collection,
get_embedding_model_path,
generate_openai_embeddings,
)
@ -69,7 +66,7 @@ from config import (
DOCS_DIR,
RAG_EMBEDDING_ENGINE,
RAG_EMBEDDING_MODEL,
RAG_EMBEDDING_MODEL_AUTO_UPDATE,
RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
RAG_OPENAI_API_BASE_URL,
RAG_OPENAI_API_KEY,
DEVICE_TYPE,
@ -101,15 +98,12 @@ app.state.OPENAI_API_KEY = RAG_OPENAI_API_KEY
app.state.PDF_EXTRACT_IMAGES = False
app.state.sentence_transformer_ef = (
embedding_functions.SentenceTransformerEmbeddingFunction(
model_name=get_embedding_model_path(
app.state.RAG_EMBEDDING_MODEL, RAG_EMBEDDING_MODEL_AUTO_UPDATE
),
if app.state.RAG_EMBEDDING_ENGINE == "":
app.state.sentence_transformer_ef = sentence_transformers.SentenceTransformer(
app.state.RAG_EMBEDDING_MODEL,
device=DEVICE_TYPE,
trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
)
)
origins = ["*"]
@ -185,13 +179,10 @@ async def update_embedding_config(
app.state.OPENAI_API_BASE_URL = form_data.openai_config.url
app.state.OPENAI_API_KEY = form_data.openai_config.key
else:
sentence_transformer_ef = (
embedding_functions.SentenceTransformerEmbeddingFunction(
model_name=get_embedding_model_path(
form_data.embedding_model, True
),
device=DEVICE_TYPE,
)
sentence_transformer_ef = sentence_transformers.SentenceTransformer(
app.state.RAG_EMBEDDING_MODEL,
device=DEVICE_TYPE,
trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
)
app.state.RAG_EMBEDDING_MODEL = form_data.embedding_model
app.state.sentence_transformer_ef = sentence_transformer_ef
@ -294,38 +285,34 @@ def query_doc_handler(
form_data: QueryDocForm,
user=Depends(get_current_user),
):
try:
if app.state.RAG_EMBEDDING_ENGINE == "":
return query_doc(
collection_name=form_data.collection_name,
query=form_data.query,
k=form_data.k if form_data.k else app.state.TOP_K,
embedding_function=app.state.sentence_transformer_ef,
query_embeddings = app.state.sentence_transformer_ef.encode(
form_data.query
).tolist()
elif app.state.RAG_EMBEDDING_ENGINE == "ollama":
query_embeddings = generate_ollama_embeddings(
GenerateEmbeddingsForm(
**{
"model": app.state.RAG_EMBEDDING_MODEL,
"prompt": form_data.query,
}
)
)
elif app.state.RAG_EMBEDDING_ENGINE == "openai":
query_embeddings = generate_openai_embeddings(
model=app.state.RAG_EMBEDDING_MODEL,
text=form_data.query,
key=app.state.OPENAI_API_KEY,
url=app.state.OPENAI_API_BASE_URL,
)
else:
if app.state.RAG_EMBEDDING_ENGINE == "ollama":
query_embeddings = generate_ollama_embeddings(
GenerateEmbeddingsForm(
**{
"model": app.state.RAG_EMBEDDING_MODEL,
"prompt": form_data.query,
}
)
)
elif app.state.RAG_EMBEDDING_ENGINE == "openai":
query_embeddings = generate_openai_embeddings(
model=app.state.RAG_EMBEDDING_MODEL,
text=form_data.query,
key=app.state.OPENAI_API_KEY,
url=app.state.OPENAI_API_BASE_URL,
)
return query_embeddings_doc(
collection_name=form_data.collection_name,
query_embeddings=query_embeddings,
k=form_data.k if form_data.k else app.state.TOP_K,
)
return query_embeddings_doc(
collection_name=form_data.collection_name,
query=form_data.query,
query_embeddings=query_embeddings,
k=form_data.k if form_data.k else app.state.TOP_K,
)
except Exception as e:
log.exception(e)
@ -348,36 +335,31 @@ def query_collection_handler(
):
try:
if app.state.RAG_EMBEDDING_ENGINE == "":
return query_collection(
collection_names=form_data.collection_names,
query=form_data.query,
k=form_data.k if form_data.k else app.state.TOP_K,
embedding_function=app.state.sentence_transformer_ef,
)
else:
if app.state.RAG_EMBEDDING_ENGINE == "ollama":
query_embeddings = generate_ollama_embeddings(
GenerateEmbeddingsForm(
**{
"model": app.state.RAG_EMBEDDING_MODEL,
"prompt": form_data.query,
}
)
query_embeddings = app.state.sentence_transformer_ef.encode(
form_data.query
).tolist()
elif app.state.RAG_EMBEDDING_ENGINE == "ollama":
query_embeddings = generate_ollama_embeddings(
GenerateEmbeddingsForm(
**{
"model": app.state.RAG_EMBEDDING_MODEL,
"prompt": form_data.query,
}
)
elif app.state.RAG_EMBEDDING_ENGINE == "openai":
query_embeddings = generate_openai_embeddings(
model=app.state.RAG_EMBEDDING_MODEL,
text=form_data.query,
key=app.state.OPENAI_API_KEY,
url=app.state.OPENAI_API_BASE_URL,
)
return query_embeddings_collection(
collection_names=form_data.collection_names,
query_embeddings=query_embeddings,
k=form_data.k if form_data.k else app.state.TOP_K,
)
elif app.state.RAG_EMBEDDING_ENGINE == "openai":
query_embeddings = generate_openai_embeddings(
model=app.state.RAG_EMBEDDING_MODEL,
text=form_data.query,
key=app.state.OPENAI_API_KEY,
url=app.state.OPENAI_API_BASE_URL,
)
return query_embeddings_collection(
collection_names=form_data.collection_names,
query_embeddings=query_embeddings,
k=form_data.k if form_data.k else app.state.TOP_K,
)
except Exception as e:
log.exception(e)
@ -445,6 +427,8 @@ def store_docs_in_vector_db(docs, collection_name, overwrite: bool = False) -> b
log.info(f"store_docs_in_vector_db {docs} {collection_name}")
texts = [doc.page_content for doc in docs]
texts = list(map(lambda x: x.replace("\n", " "), texts))
metadatas = [doc.metadata for doc in docs]
try:
@ -454,52 +438,38 @@ def store_docs_in_vector_db(docs, collection_name, overwrite: bool = False) -> b
log.info(f"deleting existing collection {collection_name}")
CHROMA_CLIENT.delete_collection(name=collection_name)
collection = CHROMA_CLIENT.create_collection(name=collection_name)
if app.state.RAG_EMBEDDING_ENGINE == "":
collection = CHROMA_CLIENT.create_collection(
name=collection_name,
embedding_function=app.state.sentence_transformer_ef,
)
for batch in create_batches(
api=CHROMA_CLIENT,
ids=[str(uuid.uuid1()) for _ in texts],
metadatas=metadatas,
documents=texts,
):
collection.add(*batch)
else:
collection = CHROMA_CLIENT.create_collection(name=collection_name)
if app.state.RAG_EMBEDDING_ENGINE == "ollama":
embeddings = [
generate_ollama_embeddings(
GenerateEmbeddingsForm(
**{"model": app.state.RAG_EMBEDDING_MODEL, "prompt": text}
)
embeddings = app.state.sentence_transformer_ef.encode(texts).tolist()
elif app.state.RAG_EMBEDDING_ENGINE == "ollama":
embeddings = [
generate_ollama_embeddings(
GenerateEmbeddingsForm(
**{"model": app.state.RAG_EMBEDDING_MODEL, "prompt": text}
)
for text in texts
]
elif app.state.RAG_EMBEDDING_ENGINE == "openai":
embeddings = [
generate_openai_embeddings(
model=app.state.RAG_EMBEDDING_MODEL,
text=text,
key=app.state.OPENAI_API_KEY,
url=app.state.OPENAI_API_BASE_URL,
)
for text in texts
]
)
for text in texts
]
elif app.state.RAG_EMBEDDING_ENGINE == "openai":
embeddings = [
generate_openai_embeddings(
model=app.state.RAG_EMBEDDING_MODEL,
text=text,
key=app.state.OPENAI_API_KEY,
url=app.state.OPENAI_API_BASE_URL,
)
for text in texts
]
for batch in create_batches(
api=CHROMA_CLIENT,
ids=[str(uuid.uuid1()) for _ in texts],
metadatas=metadatas,
embeddings=embeddings,
documents=texts,
):
collection.add(*batch)
for batch in create_batches(
api=CHROMA_CLIENT,
ids=[str(uuid.uuid1()) for _ in texts],
metadatas=metadatas,
embeddings=embeddings,
documents=texts,
):
collection.add(*batch)
return True
except Exception as e: