forked from open-webui/open-webui
refac: rag pipeline
This commit is contained in:
parent
8f1563a7a5
commit
ce9a5d12e0
3 changed files with 179 additions and 154 deletions
|
@ -47,9 +47,11 @@ from apps.web.models.documents import (
|
|||
|
||||
from apps.rag.utils import (
|
||||
get_model_path,
|
||||
query_embeddings_doc,
|
||||
get_embeddings_function,
|
||||
query_embeddings_collection,
|
||||
get_embedding_function,
|
||||
query_doc,
|
||||
query_doc_with_hybrid_search,
|
||||
query_collection,
|
||||
query_collection_with_hybrid_search,
|
||||
)
|
||||
|
||||
from utils.misc import (
|
||||
|
@ -147,6 +149,15 @@ update_reranking_model(
|
|||
RAG_RERANKING_MODEL_AUTO_UPDATE,
|
||||
)
|
||||
|
||||
|
||||
app.state.EMBEDDING_FUNCTION = get_embedding_function(
|
||||
app.state.RAG_EMBEDDING_ENGINE,
|
||||
app.state.RAG_EMBEDDING_MODEL,
|
||||
app.state.sentence_transformer_ef,
|
||||
app.state.OPENAI_API_KEY,
|
||||
app.state.OPENAI_API_BASE_URL,
|
||||
)
|
||||
|
||||
origins = ["*"]
|
||||
|
||||
|
||||
|
@ -227,6 +238,14 @@ async def update_embedding_config(
|
|||
|
||||
update_embedding_model(app.state.RAG_EMBEDDING_MODEL, True)
|
||||
|
||||
app.state.EMBEDDING_FUNCTION = get_embedding_function(
|
||||
app.state.RAG_EMBEDDING_ENGINE,
|
||||
app.state.RAG_EMBEDDING_MODEL,
|
||||
app.state.sentence_transformer_ef,
|
||||
app.state.OPENAI_API_KEY,
|
||||
app.state.OPENAI_API_BASE_URL,
|
||||
)
|
||||
|
||||
return {
|
||||
"status": True,
|
||||
"embedding_engine": app.state.RAG_EMBEDDING_ENGINE,
|
||||
|
@ -367,27 +386,22 @@ def query_doc_handler(
|
|||
user=Depends(get_current_user),
|
||||
):
|
||||
try:
|
||||
embeddings_function = get_embeddings_function(
|
||||
app.state.RAG_EMBEDDING_ENGINE,
|
||||
app.state.RAG_EMBEDDING_MODEL,
|
||||
app.state.sentence_transformer_ef,
|
||||
app.state.OPENAI_API_KEY,
|
||||
app.state.OPENAI_API_BASE_URL,
|
||||
)
|
||||
|
||||
return query_embeddings_doc(
|
||||
collection_name=form_data.collection_name,
|
||||
query=form_data.query,
|
||||
k=form_data.k if form_data.k else app.state.TOP_K,
|
||||
r=form_data.r if form_data.r else app.state.RELEVANCE_THRESHOLD,
|
||||
embeddings_function=embeddings_function,
|
||||
reranking_function=app.state.sentence_transformer_rf,
|
||||
hybrid_search=(
|
||||
form_data.hybrid
|
||||
if form_data.hybrid
|
||||
else app.state.ENABLE_RAG_HYBRID_SEARCH
|
||||
),
|
||||
)
|
||||
if app.state.ENABLE_RAG_HYBRID_SEARCH:
|
||||
return query_doc_with_hybrid_search(
|
||||
collection_name=form_data.collection_name,
|
||||
query=form_data.query,
|
||||
embeddings_function=app.state.EMBEDDING_FUNCTION,
|
||||
reranking_function=app.state.sentence_transformer_rf,
|
||||
k=form_data.k if form_data.k else app.state.TOP_K,
|
||||
r=form_data.r if form_data.r else app.state.RELEVANCE_THRESHOLD,
|
||||
)
|
||||
else:
|
||||
return query_doc(
|
||||
collection_name=form_data.collection_name,
|
||||
query=form_data.query,
|
||||
embeddings_function=app.state.EMBEDDING_FUNCTION,
|
||||
k=form_data.k if form_data.k else app.state.TOP_K,
|
||||
)
|
||||
except Exception as e:
|
||||
log.exception(e)
|
||||
raise HTTPException(
|
||||
|
@ -410,27 +424,23 @@ def query_collection_handler(
|
|||
user=Depends(get_current_user),
|
||||
):
|
||||
try:
|
||||
embeddings_function = get_embeddings_function(
|
||||
app.state.RAG_EMBEDDING_ENGINE,
|
||||
app.state.RAG_EMBEDDING_MODEL,
|
||||
app.state.sentence_transformer_ef,
|
||||
app.state.OPENAI_API_KEY,
|
||||
app.state.OPENAI_API_BASE_URL,
|
||||
)
|
||||
if app.state.ENABLE_RAG_HYBRID_SEARCH:
|
||||
return query_collection_with_hybrid_search(
|
||||
collection_names=form_data.collection_names,
|
||||
query=form_data.query,
|
||||
embeddings_function=app.state.EMBEDDING_FUNCTION,
|
||||
reranking_function=app.state.sentence_transformer_rf,
|
||||
k=form_data.k if form_data.k else app.state.TOP_K,
|
||||
r=form_data.r if form_data.r else app.state.RELEVANCE_THRESHOLD,
|
||||
)
|
||||
else:
|
||||
return query_collection(
|
||||
collection_names=form_data.collection_names,
|
||||
query=form_data.query,
|
||||
embeddings_function=app.state.EMBEDDING_FUNCTION,
|
||||
k=form_data.k if form_data.k else app.state.TOP_K,
|
||||
)
|
||||
|
||||
return query_embeddings_collection(
|
||||
collection_names=form_data.collection_names,
|
||||
query=form_data.query,
|
||||
k=form_data.k if form_data.k else app.state.TOP_K,
|
||||
r=form_data.r if form_data.r else app.state.RELEVANCE_THRESHOLD,
|
||||
embeddings_function=embeddings_function,
|
||||
reranking_function=app.state.sentence_transformer_rf,
|
||||
hybrid_search=(
|
||||
form_data.hybrid
|
||||
if form_data.hybrid
|
||||
else app.state.ENABLE_RAG_HYBRID_SEARCH
|
||||
),
|
||||
)
|
||||
except Exception as e:
|
||||
log.exception(e)
|
||||
raise HTTPException(
|
||||
|
@ -508,7 +518,7 @@ def store_docs_in_vector_db(docs, collection_name, overwrite: bool = False) -> b
|
|||
|
||||
collection = CHROMA_CLIENT.create_collection(name=collection_name)
|
||||
|
||||
embedding_func = get_embeddings_function(
|
||||
embedding_func = get_embedding_function(
|
||||
app.state.RAG_EMBEDDING_ENGINE,
|
||||
app.state.RAG_EMBEDDING_MODEL,
|
||||
app.state.sentence_transformer_ef,
|
||||
|
|
|
@ -26,61 +26,72 @@ log = logging.getLogger(__name__)
|
|||
log.setLevel(SRC_LOG_LEVELS["RAG"])
|
||||
|
||||
|
||||
def query_embeddings_doc(
|
||||
def query_doc(
|
||||
collection_name: str,
|
||||
query: str,
|
||||
embeddings_function,
|
||||
reranking_function,
|
||||
embedding_function,
|
||||
k: int,
|
||||
r: int,
|
||||
hybrid_search: bool,
|
||||
):
|
||||
try:
|
||||
collection = CHROMA_CLIENT.get_collection(name=collection_name)
|
||||
query_embeddings = embedding_function(query)
|
||||
result = collection.query(
|
||||
query_embeddings=[query_embeddings],
|
||||
n_results=k,
|
||||
)
|
||||
|
||||
if hybrid_search:
|
||||
documents = collection.get() # get all documents
|
||||
bm25_retriever = BM25Retriever.from_texts(
|
||||
texts=documents.get("documents"),
|
||||
metadatas=documents.get("metadatas"),
|
||||
)
|
||||
bm25_retriever.k = k
|
||||
log.info(f"query_doc:result {result}")
|
||||
return result
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
chroma_retriever = ChromaRetriever(
|
||||
collection=collection,
|
||||
embeddings_function=embeddings_function,
|
||||
top_n=k,
|
||||
)
|
||||
|
||||
ensemble_retriever = EnsembleRetriever(
|
||||
retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5]
|
||||
)
|
||||
def query_doc_with_hybrid_search(
|
||||
collection_name: str,
|
||||
query: str,
|
||||
embedding_function,
|
||||
k: int,
|
||||
reranking_function,
|
||||
r: int,
|
||||
):
|
||||
try:
|
||||
collection = CHROMA_CLIENT.get_collection(name=collection_name)
|
||||
documents = collection.get() # get all documents
|
||||
|
||||
compressor = RerankCompressor(
|
||||
embeddings_function=embeddings_function,
|
||||
reranking_function=reranking_function,
|
||||
r_score=r,
|
||||
top_n=k,
|
||||
)
|
||||
bm25_retriever = BM25Retriever.from_texts(
|
||||
texts=documents.get("documents"),
|
||||
metadatas=documents.get("metadatas"),
|
||||
)
|
||||
bm25_retriever.k = k
|
||||
|
||||
compression_retriever = ContextualCompressionRetriever(
|
||||
base_compressor=compressor, base_retriever=ensemble_retriever
|
||||
)
|
||||
chroma_retriever = ChromaRetriever(
|
||||
collection=collection,
|
||||
embedding_function=embedding_function,
|
||||
top_n=k,
|
||||
)
|
||||
|
||||
result = compression_retriever.invoke(query)
|
||||
result = {
|
||||
"distances": [[d.metadata.get("score") for d in result]],
|
||||
"documents": [[d.page_content for d in result]],
|
||||
"metadatas": [[d.metadata for d in result]],
|
||||
}
|
||||
else:
|
||||
query_embeddings = embeddings_function(query)
|
||||
result = collection.query(
|
||||
query_embeddings=[query_embeddings],
|
||||
n_results=k,
|
||||
)
|
||||
ensemble_retriever = EnsembleRetriever(
|
||||
retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5]
|
||||
)
|
||||
|
||||
log.info(f"query_embeddings_doc:result {result}")
|
||||
compressor = RerankCompressor(
|
||||
embedding_function=embedding_function,
|
||||
reranking_function=reranking_function,
|
||||
r_score=r,
|
||||
top_n=k,
|
||||
)
|
||||
|
||||
compression_retriever = ContextualCompressionRetriever(
|
||||
base_compressor=compressor, base_retriever=ensemble_retriever
|
||||
)
|
||||
|
||||
result = compression_retriever.invoke(query)
|
||||
result = {
|
||||
"distances": [[d.metadata.get("score") for d in result]],
|
||||
"documents": [[d.page_content for d in result]],
|
||||
"metadatas": [[d.metadata for d in result]],
|
||||
}
|
||||
log.info(f"query_doc_with_hybrid_search:result {result}")
|
||||
return result
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
@ -127,35 +138,52 @@ def merge_and_sort_query_results(query_results, k, reverse=False):
|
|||
return result
|
||||
|
||||
|
||||
def query_embeddings_collection(
|
||||
def query_collection(
|
||||
collection_names: List[str],
|
||||
query: str,
|
||||
embedding_function,
|
||||
k: int,
|
||||
r: float,
|
||||
embeddings_function,
|
||||
reranking_function,
|
||||
hybrid_search: bool,
|
||||
):
|
||||
|
||||
results = []
|
||||
|
||||
for collection_name in collection_names:
|
||||
try:
|
||||
result = query_embeddings_doc(
|
||||
result = query_doc(
|
||||
collection_name=collection_name,
|
||||
query=query,
|
||||
k=k,
|
||||
r=r,
|
||||
embeddings_function=embeddings_function,
|
||||
embedding_function=embedding_function,
|
||||
)
|
||||
results.append(result)
|
||||
except:
|
||||
pass
|
||||
return merge_and_sort_query_results(results, k=k)
|
||||
|
||||
|
||||
def query_collection_with_hybrid_search(
|
||||
collection_names: List[str],
|
||||
query: str,
|
||||
embedding_function,
|
||||
k: int,
|
||||
reranking_function,
|
||||
r: float,
|
||||
):
|
||||
|
||||
results = []
|
||||
for collection_name in collection_names:
|
||||
try:
|
||||
result = query_doc_with_hybrid_search(
|
||||
collection_name=collection_name,
|
||||
query=query,
|
||||
embedding_function=embedding_function,
|
||||
k=k,
|
||||
reranking_function=reranking_function,
|
||||
hybrid_search=hybrid_search,
|
||||
r=r,
|
||||
)
|
||||
results.append(result)
|
||||
except:
|
||||
pass
|
||||
|
||||
reverse = hybrid_search and reranking_function is not None
|
||||
return merge_and_sort_query_results(results, k=k, reverse=reverse)
|
||||
return merge_and_sort_query_results(results, k=k, reverse=True)
|
||||
|
||||
|
||||
def rag_template(template: str, context: str, query: str):
|
||||
|
@ -164,7 +192,7 @@ def rag_template(template: str, context: str, query: str):
|
|||
return template
|
||||
|
||||
|
||||
def get_embeddings_function(
|
||||
def get_embedding_function(
|
||||
embedding_engine,
|
||||
embedding_model,
|
||||
embedding_function,
|
||||
|
@ -204,19 +232,13 @@ def rag_messages(
|
|||
docs,
|
||||
messages,
|
||||
template,
|
||||
embedding_function,
|
||||
k,
|
||||
reranking_function,
|
||||
r,
|
||||
hybrid_search,
|
||||
embedding_engine,
|
||||
embedding_model,
|
||||
embedding_function,
|
||||
reranking_function,
|
||||
openai_key,
|
||||
openai_url,
|
||||
):
|
||||
log.debug(
|
||||
f"docs: {docs} {messages} {embedding_engine} {embedding_model} {embedding_function} {reranking_function} {openai_key} {openai_url}"
|
||||
)
|
||||
log.debug(f"docs: {docs} {messages} {embedding_function} {reranking_function}")
|
||||
|
||||
last_user_message_idx = None
|
||||
for i in range(len(messages) - 1, -1, -1):
|
||||
|
@ -243,14 +265,6 @@ def rag_messages(
|
|||
content_type = None
|
||||
query = ""
|
||||
|
||||
embeddings_function = get_embeddings_function(
|
||||
embedding_engine,
|
||||
embedding_model,
|
||||
embedding_function,
|
||||
openai_key,
|
||||
openai_url,
|
||||
)
|
||||
|
||||
extracted_collections = []
|
||||
relevant_contexts = []
|
||||
|
||||
|
@ -271,26 +285,31 @@ def rag_messages(
|
|||
try:
|
||||
if doc["type"] == "text":
|
||||
context = doc["content"]
|
||||
elif doc["type"] == "collection":
|
||||
context = query_embeddings_collection(
|
||||
collection_names=doc["collection_names"],
|
||||
query=query,
|
||||
k=k,
|
||||
r=r,
|
||||
embeddings_function=embeddings_function,
|
||||
reranking_function=reranking_function,
|
||||
hybrid_search=hybrid_search,
|
||||
)
|
||||
else:
|
||||
context = query_embeddings_doc(
|
||||
collection_name=doc["collection_name"],
|
||||
query=query,
|
||||
k=k,
|
||||
r=r,
|
||||
embeddings_function=embeddings_function,
|
||||
reranking_function=reranking_function,
|
||||
hybrid_search=hybrid_search,
|
||||
)
|
||||
if hybrid_search:
|
||||
context = query_collection_with_hybrid_search(
|
||||
collection_names=(
|
||||
doc["collection_names"]
|
||||
if doc["type"] == "collection"
|
||||
else [doc["collection_name"]]
|
||||
),
|
||||
query=query,
|
||||
embedding_function=embedding_function,
|
||||
k=k,
|
||||
reranking_function=reranking_function,
|
||||
r=r,
|
||||
)
|
||||
else:
|
||||
context = query_collection(
|
||||
collection_names=(
|
||||
doc["collection_names"]
|
||||
if doc["type"] == "collection"
|
||||
else [doc["collection_name"]]
|
||||
),
|
||||
query=query,
|
||||
embedding_function=embedding_function,
|
||||
k=k,
|
||||
)
|
||||
except Exception as e:
|
||||
log.exception(e)
|
||||
context = None
|
||||
|
@ -404,7 +423,7 @@ from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
|||
|
||||
class ChromaRetriever(BaseRetriever):
|
||||
collection: Any
|
||||
embeddings_function: Any
|
||||
embedding_function: Any
|
||||
top_n: int
|
||||
|
||||
def _get_relevant_documents(
|
||||
|
@ -413,7 +432,7 @@ class ChromaRetriever(BaseRetriever):
|
|||
*,
|
||||
run_manager: CallbackManagerForRetrieverRun,
|
||||
) -> List[Document]:
|
||||
query_embeddings = self.embeddings_function(query)
|
||||
query_embeddings = self.embedding_function(query)
|
||||
|
||||
results = self.collection.query(
|
||||
query_embeddings=[query_embeddings],
|
||||
|
@ -445,7 +464,7 @@ from sentence_transformers import util
|
|||
|
||||
|
||||
class RerankCompressor(BaseDocumentCompressor):
|
||||
embeddings_function: Any
|
||||
embedding_function: Any
|
||||
reranking_function: Any
|
||||
r_score: float
|
||||
top_n: int
|
||||
|
@ -465,8 +484,8 @@ class RerankCompressor(BaseDocumentCompressor):
|
|||
[(query, doc.page_content) for doc in documents]
|
||||
)
|
||||
else:
|
||||
query_embedding = self.embeddings_function(query)
|
||||
document_embedding = self.embeddings_function(
|
||||
query_embedding = self.embedding_function(query)
|
||||
document_embedding = self.embedding_function(
|
||||
[doc.page_content for doc in documents]
|
||||
)
|
||||
scores = util.cos_sim(query_embedding, document_embedding)[0]
|
||||
|
|
|
@ -117,18 +117,14 @@ class RAGMiddleware(BaseHTTPMiddleware):
|
|||
if "docs" in data:
|
||||
data = {**data}
|
||||
data["messages"] = rag_messages(
|
||||
data["docs"],
|
||||
data["messages"],
|
||||
rag_app.state.RAG_TEMPLATE,
|
||||
rag_app.state.TOP_K,
|
||||
rag_app.state.RELEVANCE_THRESHOLD,
|
||||
rag_app.state.ENABLE_RAG_HYBRID_SEARCH,
|
||||
rag_app.state.RAG_EMBEDDING_ENGINE,
|
||||
rag_app.state.RAG_EMBEDDING_MODEL,
|
||||
rag_app.state.sentence_transformer_ef,
|
||||
rag_app.state.sentence_transformer_rf,
|
||||
rag_app.state.OPENAI_API_KEY,
|
||||
rag_app.state.OPENAI_API_BASE_URL,
|
||||
docs=data["docs"],
|
||||
messages=data["messages"],
|
||||
template=rag_app.state.RAG_TEMPLATE,
|
||||
embedding_function=rag_app.state.EMBEDDING_FUNCTION,
|
||||
k=rag_app.state.TOP_K,
|
||||
reranking_function=rag_app.state.sentence_transformer_rf,
|
||||
r=rag_app.state.RELEVANCE_THRESHOLD,
|
||||
hybrid_search=rag_app.state.ENABLE_RAG_HYBRID_SEARCH,
|
||||
)
|
||||
del data["docs"]
|
||||
|
||||
|
|
Loading…
Reference in a new issue