forked from open-webui/open-webui
		
	Merge pull request #772 from jannikstdl/choose-embedding-model
feat: choose embedding model when using docker
This commit is contained in:
		
						commit
						c3916927bb
					
				
					 4 changed files with 87 additions and 17 deletions
				
			
		
							
								
								
									
										23
									
								
								Dockerfile
									
										
									
									
									
								
							
							
						
						
									
										23
									
								
								Dockerfile
									
										
									
									
									
								
							|  | @ -30,10 +30,24 @@ ENV WEBUI_SECRET_KEY "" | |||
| ENV SCARF_NO_ANALYTICS true | ||||
| ENV DO_NOT_TRACK true | ||||
| 
 | ||||
| #Whisper TTS Settings | ||||
| ######## Preloaded models ######## | ||||
| # whisper TTS Settings | ||||
| ENV WHISPER_MODEL="base" | ||||
| ENV WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models" | ||||
| 
 | ||||
| # RAG Embedding Model Settings | ||||
| # any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers | ||||
| # Leaderboard: https://huggingface.co/spaces/mteb/leaderboard  | ||||
| # for better persormance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB) | ||||
| # IMPORTANT: If you change the default model (all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them. | ||||
| ENV RAG_EMBEDDING_MODEL="all-MiniLM-L6-v2" | ||||
| # device type for whisper tts and ebbeding models - "cpu" (default), "cuda" (nvidia gpu and CUDA required) or "mps" (apple silicon) - choosing this right can lead to better performance | ||||
| ENV RAG_EMBEDDING_MODEL_DEVICE_TYPE="cpu" | ||||
| ENV RAG_EMBEDDING_MODEL_DIR="/app/backend/data/cache/embedding/models" | ||||
| ENV SENTENCE_TRANSFORMERS_HOME $RAG_EMBEDDING_MODEL_DIR | ||||
| 
 | ||||
| ######## Preloaded models ######## | ||||
| 
 | ||||
| WORKDIR /app/backend | ||||
| 
 | ||||
| # install python dependencies | ||||
|  | @ -48,9 +62,10 @@ RUN apt-get update \ | |||
|     && apt-get install -y pandoc netcat-openbsd \ | ||||
|     && rm -rf /var/lib/apt/lists/* | ||||
| 
 | ||||
| # RUN python -c "from sentence_transformers import SentenceTransformer; model = SentenceTransformer('all-MiniLM-L6-v2')" | ||||
| RUN python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" | ||||
| 
 | ||||
| # preload embedding model | ||||
| RUN python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device=os.environ['RAG_EMBEDDING_MODEL_DEVICE_TYPE'])" | ||||
| # preload tts model | ||||
| RUN python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='auto', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" | ||||
| 
 | ||||
| # copy embedding weight from build | ||||
| RUN mkdir -p /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2 | ||||
|  |  | |||
|  | @ -56,7 +56,7 @@ def transcribe( | |||
| 
 | ||||
|         model = WhisperModel( | ||||
|             WHISPER_MODEL, | ||||
|             device="cpu", | ||||
|             device="auto", | ||||
|             compute_type="int8", | ||||
|             download_root=WHISPER_MODEL_DIR, | ||||
|         ) | ||||
|  |  | |||
|  | @ -1,6 +1,5 @@ | |||
| from fastapi import ( | ||||
|     FastAPI, | ||||
|     Request, | ||||
|     Depends, | ||||
|     HTTPException, | ||||
|     status, | ||||
|  | @ -14,7 +13,8 @@ import os, shutil | |||
| from pathlib import Path | ||||
| from typing import List | ||||
| 
 | ||||
| # from chromadb.utils import embedding_functions | ||||
| from sentence_transformers import SentenceTransformer | ||||
| from chromadb.utils import embedding_functions | ||||
| 
 | ||||
| from langchain_community.document_loaders import ( | ||||
|     WebBaseLoader, | ||||
|  | @ -30,16 +30,12 @@ from langchain_community.document_loaders import ( | |||
|     UnstructuredExcelLoader, | ||||
| ) | ||||
| from langchain.text_splitter import RecursiveCharacterTextSplitter | ||||
| from langchain.chains import RetrievalQA | ||||
| from langchain_community.vectorstores import Chroma | ||||
| 
 | ||||
| 
 | ||||
| from pydantic import BaseModel | ||||
| from typing import Optional | ||||
| import mimetypes | ||||
| import uuid | ||||
| import json | ||||
| import time | ||||
| 
 | ||||
| 
 | ||||
| from apps.web.models.documents import ( | ||||
|  | @ -58,23 +54,37 @@ from utils.utils import get_current_user, get_admin_user | |||
| from config import ( | ||||
|     UPLOAD_DIR, | ||||
|     DOCS_DIR, | ||||
|     EMBED_MODEL, | ||||
|     RAG_EMBEDDING_MODEL, | ||||
|     RAG_EMBEDDING_MODEL_DEVICE_TYPE, | ||||
|     CHROMA_CLIENT, | ||||
|     CHUNK_SIZE, | ||||
|     CHUNK_OVERLAP, | ||||
|     RAG_TEMPLATE, | ||||
| ) | ||||
| 
 | ||||
| from constants import ERROR_MESSAGES | ||||
| 
 | ||||
| # EMBEDDING_FUNC = embedding_functions.SentenceTransformerEmbeddingFunction( | ||||
| #     model_name=EMBED_MODEL | ||||
| # | ||||
| # if RAG_EMBEDDING_MODEL: | ||||
| #    sentence_transformer_ef = SentenceTransformer( | ||||
| #        model_name_or_path=RAG_EMBEDDING_MODEL, | ||||
| #        cache_folder=RAG_EMBEDDING_MODEL_DIR, | ||||
| #        device=RAG_EMBEDDING_MODEL_DEVICE_TYPE, | ||||
| #    ) | ||||
| 
 | ||||
| 
 | ||||
| app = FastAPI() | ||||
| 
 | ||||
| app.state.CHUNK_SIZE = CHUNK_SIZE | ||||
| app.state.CHUNK_OVERLAP = CHUNK_OVERLAP | ||||
| app.state.RAG_TEMPLATE = RAG_TEMPLATE | ||||
| app.state.RAG_EMBEDDING_MODEL = RAG_EMBEDDING_MODEL | ||||
| app.state.sentence_transformer_ef = ( | ||||
|     embedding_functions.SentenceTransformerEmbeddingFunction( | ||||
|         model_name=app.state.RAG_EMBEDDING_MODEL, | ||||
|         device=RAG_EMBEDDING_MODEL_DEVICE_TYPE, | ||||
|     ) | ||||
| ) | ||||
| 
 | ||||
| 
 | ||||
| origins = ["*"] | ||||
|  | @ -106,7 +116,10 @@ def store_data_in_vector_db(data, collection_name) -> bool: | |||
|     metadatas = [doc.metadata for doc in docs] | ||||
| 
 | ||||
|     try: | ||||
|         collection = CHROMA_CLIENT.create_collection(name=collection_name) | ||||
|         collection = CHROMA_CLIENT.create_collection( | ||||
|             name=collection_name, | ||||
|             embedding_function=app.state.sentence_transformer_ef, | ||||
|         ) | ||||
| 
 | ||||
|         collection.add( | ||||
|             documents=texts, metadatas=metadatas, ids=[str(uuid.uuid1()) for _ in texts] | ||||
|  | @ -126,6 +139,38 @@ async def get_status(): | |||
|         "status": True, | ||||
|         "chunk_size": app.state.CHUNK_SIZE, | ||||
|         "chunk_overlap": app.state.CHUNK_OVERLAP, | ||||
|         "template": app.state.RAG_TEMPLATE, | ||||
|         "embedding_model": app.state.RAG_EMBEDDING_MODEL, | ||||
|     } | ||||
| 
 | ||||
| 
 | ||||
| @app.get("/embedding/model") | ||||
| async def get_embedding_model(user=Depends(get_admin_user)): | ||||
|     return { | ||||
|         "status": True, | ||||
|         "embedding_model": app.state.RAG_EMBEDDING_MODEL, | ||||
|     } | ||||
| 
 | ||||
| 
 | ||||
| class EmbeddingModelUpdateForm(BaseModel): | ||||
|     embedding_model: str | ||||
| 
 | ||||
| 
 | ||||
| @app.post("/embedding/model/update") | ||||
| async def update_embedding_model( | ||||
|     form_data: EmbeddingModelUpdateForm, user=Depends(get_admin_user) | ||||
| ): | ||||
|     app.state.RAG_EMBEDDING_MODEL = form_data.embedding_model | ||||
|     app.state.sentence_transformer_ef = ( | ||||
|         embedding_functions.SentenceTransformerEmbeddingFunction( | ||||
|             model_name=app.state.RAG_EMBEDDING_MODEL, | ||||
|             device=RAG_EMBEDDING_MODEL_DEVICE_TYPE, | ||||
|         ) | ||||
|     ) | ||||
| 
 | ||||
|     return { | ||||
|         "status": True, | ||||
|         "embedding_model": app.state.RAG_EMBEDDING_MODEL, | ||||
|     } | ||||
| 
 | ||||
| 
 | ||||
|  | @ -190,8 +235,10 @@ def query_doc( | |||
|     user=Depends(get_current_user), | ||||
| ): | ||||
|     try: | ||||
|         # if you use docker use the model from the environment variable | ||||
|         collection = CHROMA_CLIENT.get_collection( | ||||
|             name=form_data.collection_name, | ||||
|             embedding_function=app.state.sentence_transformer_ef, | ||||
|         ) | ||||
|         result = collection.query(query_texts=[form_data.query], n_results=form_data.k) | ||||
|         return result | ||||
|  | @ -263,9 +310,12 @@ def query_collection( | |||
| 
 | ||||
|     for collection_name in form_data.collection_names: | ||||
|         try: | ||||
|             # if you use docker use the model from the environment variable | ||||
|             collection = CHROMA_CLIENT.get_collection( | ||||
|                 name=collection_name, | ||||
|                 embedding_function=app.state.sentence_transformer_ef, | ||||
|             ) | ||||
| 
 | ||||
|             result = collection.query( | ||||
|                 query_texts=[form_data.query], n_results=form_data.k | ||||
|             ) | ||||
|  |  | |||
|  | @ -136,7 +136,12 @@ if WEBUI_AUTH and WEBUI_SECRET_KEY == "": | |||
| #################################### | ||||
| 
 | ||||
| CHROMA_DATA_PATH = f"{DATA_DIR}/vector_db" | ||||
| EMBED_MODEL = "all-MiniLM-L6-v2" | ||||
| # this uses the model defined in the Dockerfile ENV variable. If you dont use docker or docker based deployments such as k8s, the default embedding model will be used (all-MiniLM-L6-v2) | ||||
| RAG_EMBEDDING_MODEL = os.environ.get("RAG_EMBEDDING_MODEL", "all-MiniLM-L6-v2") | ||||
| # device type ebbeding models - "cpu" (default), "cuda" (nvidia gpu required) or "mps" (apple silicon) - choosing this right can lead to better performance | ||||
| RAG_EMBEDDING_MODEL_DEVICE_TYPE = os.environ.get( | ||||
|     "RAG_EMBEDDING_MODEL_DEVICE_TYPE", "cpu" | ||||
| ) | ||||
| CHROMA_CLIENT = chromadb.PersistentClient( | ||||
|     path=CHROMA_DATA_PATH, | ||||
|     settings=Settings(allow_reset=True, anonymized_telemetry=False), | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue
	
	 Timothy Jaeryang Baek
						Timothy Jaeryang Baek