forked from open-webui/open-webui
feat: hybrid search and reranking support
This commit is contained in:
parent
db801aee79
commit
c0259aad67
10 changed files with 262 additions and 131 deletions
|
@ -10,6 +10,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
|||
### Added
|
||||
|
||||
- **🛠️ Improved Embedding Model Support**: You can now use any embedding model `sentence_transformers` supports.
|
||||
- **🌟 Enhanced RAG Pipeline**: Added `BM25` hybrid searching with reranking model support using `sentence_transformers`.
|
||||
|
||||
## [0.1.120] - 2024-04-20
|
||||
|
||||
|
|
|
@ -10,7 +10,7 @@ ARG USE_CUDA_VER=cu121
|
|||
# for better performance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB)
|
||||
# IMPORTANT: If you change the embedding model (sentence-transformers/all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them.
|
||||
ARG USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
|
||||
ARG USE_RERANKING_MODEL=BAAI/bge-reranker-base
|
||||
ARG USE_RERANKING_MODEL=""
|
||||
|
||||
######## WebUI frontend ########
|
||||
FROM --platform=$BUILDPLATFORM node:21-alpine3.19 as build
|
||||
|
@ -67,6 +67,9 @@ ENV WHISPER_MODEL="base" \
|
|||
ENV RAG_EMBEDDING_MODEL="$USE_EMBEDDING_MODEL_DOCKER" \
|
||||
RAG_RERANKING_MODEL="$USE_RERANKING_MODEL_DOCKER" \
|
||||
SENTENCE_TRANSFORMERS_HOME="/app/backend/data/cache/embedding/models"
|
||||
|
||||
## Hugging Face download cache ##
|
||||
ENV HF_HOME="/app/backend/data/cache/embedding/models"
|
||||
#### Other models ##########################################################
|
||||
|
||||
WORKDIR /app/backend
|
||||
|
@ -102,13 +105,11 @@ RUN pip3 install uv && \
|
|||
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/$USE_CUDA_DOCKER_VER --no-cache-dir && \
|
||||
uv pip install --system -r requirements.txt --no-cache-dir && \
|
||||
python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && \
|
||||
python -c "import os; from sentence_transformers import CrossEncoder; CrossEncoder(os.environ['RAG_RERANKING_MODEL'], device='cpu')" && \
|
||||
python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; \
|
||||
else \
|
||||
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && \
|
||||
uv pip install --system -r requirements.txt --no-cache-dir && \
|
||||
python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && \
|
||||
python -c "import os; from sentence_transformers import CrossEncoder; CrossEncoder(os.environ['RAG_RERANKING_MODEL'], device='cpu')" && \
|
||||
python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; \
|
||||
fi
|
||||
|
||||
|
|
|
@ -92,6 +92,10 @@ async def get_ollama_api_urls(user=Depends(get_admin_user)):
|
|||
return {"OLLAMA_BASE_URLS": app.state.OLLAMA_BASE_URLS}
|
||||
|
||||
|
||||
def get_ollama_endpoint(url_idx: int = 0):
|
||||
return app.state.OLLAMA_BASE_URLS[url_idx]
|
||||
|
||||
|
||||
class UrlUpdateForm(BaseModel):
|
||||
urls: List[str]
|
||||
|
||||
|
|
|
@ -64,6 +64,8 @@ from config import (
|
|||
SRC_LOG_LEVELS,
|
||||
UPLOAD_DIR,
|
||||
DOCS_DIR,
|
||||
RAG_TOP_K,
|
||||
RAG_RELEVANCE_THRESHOLD,
|
||||
RAG_EMBEDDING_ENGINE,
|
||||
RAG_EMBEDDING_MODEL,
|
||||
RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
|
||||
|
@ -86,7 +88,8 @@ log.setLevel(SRC_LOG_LEVELS["RAG"])
|
|||
app = FastAPI()
|
||||
|
||||
|
||||
app.state.TOP_K = 4
|
||||
app.state.TOP_K = RAG_TOP_K
|
||||
app.state.RELEVANCE_THRESHOLD = RAG_RELEVANCE_THRESHOLD
|
||||
app.state.CHUNK_SIZE = CHUNK_SIZE
|
||||
app.state.CHUNK_OVERLAP = CHUNK_OVERLAP
|
||||
|
||||
|
@ -107,12 +110,17 @@ if app.state.RAG_EMBEDDING_ENGINE == "":
|
|||
device=DEVICE_TYPE,
|
||||
trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
|
||||
)
|
||||
else:
|
||||
app.state.sentence_transformer_ef = None
|
||||
|
||||
if not app.state.RAG_RERANKING_MODEL == "":
|
||||
app.state.sentence_transformer_rf = sentence_transformers.CrossEncoder(
|
||||
app.state.RAG_RERANKING_MODEL,
|
||||
device=DEVICE_TYPE,
|
||||
trust_remote_code=RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
|
||||
)
|
||||
else:
|
||||
app.state.sentence_transformer_rf = None
|
||||
|
||||
|
||||
origins = ["*"]
|
||||
|
@ -185,22 +193,22 @@ async def update_embedding_config(
|
|||
)
|
||||
try:
|
||||
app.state.RAG_EMBEDDING_ENGINE = form_data.embedding_engine
|
||||
app.state.RAG_EMBEDDING_MODEL = form_data.embedding_model
|
||||
|
||||
if app.state.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]:
|
||||
app.state.RAG_EMBEDDING_MODEL = form_data.embedding_model
|
||||
app.state.sentence_transformer_ef = None
|
||||
|
||||
if form_data.openai_config != None:
|
||||
app.state.OPENAI_API_BASE_URL = form_data.openai_config.url
|
||||
app.state.OPENAI_API_KEY = form_data.openai_config.key
|
||||
|
||||
app.state.sentence_transformer_ef = None
|
||||
else:
|
||||
sentence_transformer_ef = sentence_transformers.SentenceTransformer(
|
||||
app.state.sentence_transformer_ef = (
|
||||
sentence_transformers.SentenceTransformer(
|
||||
app.state.RAG_EMBEDDING_MODEL,
|
||||
device=DEVICE_TYPE,
|
||||
trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
|
||||
)
|
||||
app.state.RAG_EMBEDDING_MODEL = form_data.embedding_model
|
||||
app.state.sentence_transformer_ef = sentence_transformer_ef
|
||||
)
|
||||
|
||||
return {
|
||||
"status": True,
|
||||
|
@ -233,6 +241,10 @@ async def update_reranking_config(
|
|||
)
|
||||
try:
|
||||
app.state.RAG_RERANKING_MODEL = form_data.reranking_model
|
||||
|
||||
if app.state.RAG_RERANKING_MODEL == "":
|
||||
app.state.sentence_transformer_rf = None
|
||||
else:
|
||||
app.state.sentence_transformer_rf = sentence_transformers.CrossEncoder(
|
||||
app.state.RAG_RERANKING_MODEL,
|
||||
device=DEVICE_TYPE,
|
||||
|
@ -302,11 +314,13 @@ async def get_query_settings(user=Depends(get_admin_user)):
|
|||
"status": True,
|
||||
"template": app.state.RAG_TEMPLATE,
|
||||
"k": app.state.TOP_K,
|
||||
"r": app.state.RELEVANCE_THRESHOLD,
|
||||
}
|
||||
|
||||
|
||||
class QuerySettingsForm(BaseModel):
|
||||
k: Optional[int] = None
|
||||
r: Optional[float] = None
|
||||
template: Optional[str] = None
|
||||
|
||||
|
||||
|
@ -316,6 +330,7 @@ async def update_query_settings(
|
|||
):
|
||||
app.state.RAG_TEMPLATE = form_data.template if form_data.template else RAG_TEMPLATE
|
||||
app.state.TOP_K = form_data.k if form_data.k else 4
|
||||
app.state.RELEVANCE_THRESHOLD = form_data.r if form_data.r else 0.0
|
||||
return {"status": True, "template": app.state.RAG_TEMPLATE}
|
||||
|
||||
|
||||
|
@ -323,6 +338,7 @@ class QueryDocForm(BaseModel):
|
|||
collection_name: str
|
||||
query: str
|
||||
k: Optional[int] = None
|
||||
r: Optional[float] = None
|
||||
|
||||
|
||||
@app.post("/query/doc")
|
||||
|
@ -343,6 +359,7 @@ def query_doc_handler(
|
|||
collection_name=form_data.collection_name,
|
||||
query=form_data.query,
|
||||
k=form_data.k if form_data.k else app.state.TOP_K,
|
||||
r=form_data.r if form_data.r else app.state.RELEVANCE_THRESHOLD,
|
||||
embeddings_function=embeddings_function,
|
||||
reranking_function=app.state.sentence_transformer_rf,
|
||||
)
|
||||
|
@ -358,6 +375,7 @@ class QueryCollectionsForm(BaseModel):
|
|||
collection_names: List[str]
|
||||
query: str
|
||||
k: Optional[int] = None
|
||||
r: Optional[float] = None
|
||||
|
||||
|
||||
@app.post("/query/collection")
|
||||
|
@ -378,6 +396,7 @@ def query_collection_handler(
|
|||
collection_names=form_data.collection_names,
|
||||
query=form_data.query,
|
||||
k=form_data.k if form_data.k else app.state.TOP_K,
|
||||
r=form_data.r if form_data.r else app.state.RELEVANCE_THRESHOLD,
|
||||
embeddings_function=embeddings_function,
|
||||
reranking_function=app.state.sentence_transformer_rf,
|
||||
)
|
||||
|
@ -467,12 +486,7 @@ def store_docs_in_vector_db(docs, collection_name, overwrite: bool = False) -> b
|
|||
)
|
||||
|
||||
embedding_texts = list(map(lambda x: x.replace("\n", " "), texts))
|
||||
if app.state.RAG_EMBEDDING_ENGINE == "":
|
||||
embeddings = embedding_func(embedding_texts)
|
||||
else:
|
||||
embeddings = [
|
||||
embedding_func(embedding_texts) for text in texts
|
||||
]
|
||||
|
||||
for batch in create_batches(
|
||||
api=CHROMA_CLIENT,
|
||||
|
|
|
@ -1,8 +1,5 @@
|
|||
import logging
|
||||
import requests
|
||||
import operator
|
||||
|
||||
import sentence_transformers
|
||||
|
||||
from typing import List
|
||||
|
||||
|
@ -11,8 +8,10 @@ from apps.ollama.main import (
|
|||
GenerateEmbeddingsForm,
|
||||
)
|
||||
|
||||
from langchain_core.documents import Document
|
||||
from langchain_community.retrievers import BM25Retriever
|
||||
from langchain.retrievers import (
|
||||
BM25Retriever,
|
||||
ContextualCompressionRetriever,
|
||||
EnsembleRetriever,
|
||||
)
|
||||
|
||||
|
@ -27,6 +26,7 @@ def query_embeddings_doc(
|
|||
collection_name: str,
|
||||
query: str,
|
||||
k: int,
|
||||
r: float,
|
||||
embeddings_function,
|
||||
reranking_function,
|
||||
):
|
||||
|
@ -34,7 +34,6 @@ def query_embeddings_doc(
|
|||
# if you use docker use the model from the environment variable
|
||||
collection = CHROMA_CLIENT.get_collection(name=collection_name)
|
||||
|
||||
# keyword search
|
||||
documents = collection.get() # get all documents
|
||||
bm25_retriever = BM25Retriever.from_texts(
|
||||
texts=documents.get("documents"),
|
||||
|
@ -42,30 +41,32 @@ def query_embeddings_doc(
|
|||
)
|
||||
bm25_retriever.k = k
|
||||
|
||||
# semantic search (vector)
|
||||
chroma_retriever = ChromaRetriever(
|
||||
collection=collection,
|
||||
k=k,
|
||||
embeddings_function=embeddings_function,
|
||||
top_n=k,
|
||||
)
|
||||
|
||||
# hybrid search (ensemble)
|
||||
ensemble_retriever = EnsembleRetriever(
|
||||
retrievers=[bm25_retriever, chroma_retriever],
|
||||
weights=[0.6, 0.4]
|
||||
retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5]
|
||||
)
|
||||
|
||||
documents = ensemble_retriever.invoke(query)
|
||||
result = query_results_rank(
|
||||
query=query,
|
||||
documents=documents,
|
||||
k=k,
|
||||
compressor = RerankCompressor(
|
||||
embeddings_function=embeddings_function,
|
||||
reranking_function=reranking_function,
|
||||
r_score=r,
|
||||
top_n=k,
|
||||
)
|
||||
|
||||
compression_retriever = ContextualCompressionRetriever(
|
||||
base_compressor=compressor, base_retriever=ensemble_retriever
|
||||
)
|
||||
|
||||
result = compression_retriever.invoke(query)
|
||||
result = {
|
||||
"distances": [[d[1].item() for d in result]],
|
||||
"documents": [[d[0].page_content for d in result]],
|
||||
"metadatas": [[d[0].metadata for d in result]],
|
||||
"distances": [[d.metadata.get("score") for d in result]],
|
||||
"documents": [[d.page_content for d in result]],
|
||||
"metadatas": [[d.metadata for d in result]],
|
||||
}
|
||||
|
||||
return result
|
||||
|
@ -73,33 +74,29 @@ def query_embeddings_doc(
|
|||
raise e
|
||||
|
||||
|
||||
def query_results_rank(query: str, documents, k: int, reranking_function):
|
||||
scores = reranking_function.predict([(query, doc.page_content) for doc in documents])
|
||||
docs_with_scores = list(zip(documents, scores))
|
||||
result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
|
||||
return result[: k]
|
||||
|
||||
|
||||
def merge_and_sort_query_results(query_results, k):
|
||||
# Initialize lists to store combined data
|
||||
combined_distances = []
|
||||
combined_documents = []
|
||||
combined_metadatas = []
|
||||
|
||||
# Combine data from each dictionary
|
||||
for data in query_results:
|
||||
combined_distances.extend(data["distances"][0])
|
||||
combined_documents.extend(data["documents"][0])
|
||||
combined_metadatas.extend(data["metadatas"][0])
|
||||
|
||||
# Create a list of tuples (distance, document, metadata)
|
||||
combined = list(
|
||||
zip(combined_distances, combined_documents, combined_metadatas)
|
||||
)
|
||||
combined = list(zip(combined_distances, combined_documents, combined_metadatas))
|
||||
|
||||
# Sort the list based on distances
|
||||
combined.sort(key=lambda x: x[0])
|
||||
|
||||
# We don't have anything :-(
|
||||
if not combined:
|
||||
sorted_distances = []
|
||||
sorted_documents = []
|
||||
sorted_metadatas = []
|
||||
else:
|
||||
# Unzip the sorted list
|
||||
sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
|
||||
|
||||
|
@ -109,22 +106,20 @@ def merge_and_sort_query_results(query_results, k):
|
|||
sorted_metadatas = list(sorted_metadatas)[:k]
|
||||
|
||||
# Create the output dictionary
|
||||
merged_query_results = {
|
||||
result = {
|
||||
"distances": [sorted_distances],
|
||||
"documents": [sorted_documents],
|
||||
"metadatas": [sorted_metadatas],
|
||||
"embeddings": None,
|
||||
"uris": None,
|
||||
"data": None,
|
||||
}
|
||||
|
||||
return merged_query_results
|
||||
return result
|
||||
|
||||
|
||||
def query_embeddings_collection(
|
||||
collection_names: List[str],
|
||||
query: str,
|
||||
k: int,
|
||||
r: float,
|
||||
embeddings_function,
|
||||
reranking_function,
|
||||
):
|
||||
|
@ -137,6 +132,7 @@ def query_embeddings_collection(
|
|||
collection_name=collection_name,
|
||||
query=query,
|
||||
k=k,
|
||||
r=r,
|
||||
embeddings_function=embeddings_function,
|
||||
reranking_function=reranking_function,
|
||||
)
|
||||
|
@ -162,8 +158,9 @@ def query_embeddings_function(
|
|||
):
|
||||
if embedding_engine == "":
|
||||
return lambda query: embedding_function.encode(query).tolist()
|
||||
elif embedding_engine == "ollama":
|
||||
return lambda query: generate_ollama_embeddings(
|
||||
elif embedding_engine in ["ollama", "openai"]:
|
||||
if embedding_engine == "ollama":
|
||||
func = lambda query: generate_ollama_embeddings(
|
||||
GenerateEmbeddingsForm(
|
||||
**{
|
||||
"model": embedding_model,
|
||||
|
@ -172,19 +169,28 @@ def query_embeddings_function(
|
|||
)
|
||||
)
|
||||
elif embedding_engine == "openai":
|
||||
return lambda query: generate_openai_embeddings(
|
||||
func = lambda query: generate_openai_embeddings(
|
||||
model=embedding_model,
|
||||
text=query,
|
||||
key=openai_key,
|
||||
url=openai_url,
|
||||
)
|
||||
|
||||
def generate_multiple(query, f):
|
||||
if isinstance(query, list):
|
||||
return [f(q) for q in query]
|
||||
else:
|
||||
return f(query)
|
||||
|
||||
return lambda query: generate_multiple(query, func)
|
||||
|
||||
|
||||
def rag_messages(
|
||||
docs,
|
||||
messages,
|
||||
template,
|
||||
k,
|
||||
r,
|
||||
embedding_engine,
|
||||
embedding_model,
|
||||
embedding_function,
|
||||
|
@ -221,16 +227,6 @@ def rag_messages(
|
|||
content_type = None
|
||||
query = ""
|
||||
|
||||
relevant_contexts = []
|
||||
|
||||
for doc in docs:
|
||||
context = None
|
||||
|
||||
try:
|
||||
|
||||
if doc["type"] == "text":
|
||||
context = doc["content"]
|
||||
else:
|
||||
embeddings_function = query_embeddings_function(
|
||||
embedding_engine,
|
||||
embedding_model,
|
||||
|
@ -239,11 +235,32 @@ def rag_messages(
|
|||
openai_url,
|
||||
)
|
||||
|
||||
if doc["type"] == "collection":
|
||||
extracted_collections = []
|
||||
relevant_contexts = []
|
||||
|
||||
for doc in docs:
|
||||
context = None
|
||||
|
||||
collection = doc.get("collection_name")
|
||||
if collection:
|
||||
collection = [collection]
|
||||
else:
|
||||
collection = doc.get("collection_names", [])
|
||||
|
||||
collection = set(collection).difference(extracted_collections)
|
||||
if not collection:
|
||||
log.debug(f"skipping {doc} as it has already been extracted")
|
||||
continue
|
||||
|
||||
try:
|
||||
if doc["type"] == "text":
|
||||
context = doc["content"]
|
||||
elif doc["type"] == "collection":
|
||||
context = query_embeddings_collection(
|
||||
collection_names=doc["collection_names"],
|
||||
query=query,
|
||||
k=k,
|
||||
r=r,
|
||||
embeddings_function=embeddings_function,
|
||||
reranking_function=reranking_function,
|
||||
)
|
||||
|
@ -252,22 +269,26 @@ def rag_messages(
|
|||
collection_name=doc["collection_name"],
|
||||
query=query,
|
||||
k=k,
|
||||
r=r,
|
||||
embeddings_function=embeddings_function,
|
||||
reranking_function=reranking_function,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
log.exception(e)
|
||||
context = None
|
||||
|
||||
if context:
|
||||
relevant_contexts.append(context)
|
||||
|
||||
extracted_collections.extend(collection)
|
||||
|
||||
log.debug(f"relevant_contexts: {relevant_contexts}")
|
||||
|
||||
context_string = ""
|
||||
for context in relevant_contexts:
|
||||
if context:
|
||||
context_string += " ".join(context["documents"][0]) + "\n"
|
||||
items = context["documents"][0]
|
||||
context_string += "\n\n".join(items)
|
||||
context_string = context_string.strip()
|
||||
|
||||
ra_content = rag_template(
|
||||
template=template,
|
||||
|
@ -275,6 +296,8 @@ def rag_messages(
|
|||
query=query,
|
||||
)
|
||||
|
||||
log.debug(f"ra_content: {ra_content}")
|
||||
|
||||
if content_type == "list":
|
||||
new_content = []
|
||||
for content_item in user_message["content"]:
|
||||
|
@ -321,15 +344,14 @@ def generate_openai_embeddings(
|
|||
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
||||
|
||||
|
||||
class ChromaRetriever(BaseRetriever):
|
||||
collection: Any
|
||||
k: int
|
||||
embeddings_function: Any
|
||||
top_n: int
|
||||
|
||||
def _get_relevant_documents(
|
||||
self,
|
||||
|
@ -341,7 +363,7 @@ class ChromaRetriever(BaseRetriever):
|
|||
|
||||
results = self.collection.query(
|
||||
query_embeddings=[query_embeddings],
|
||||
n_results=self.k,
|
||||
n_results=self.top_n,
|
||||
)
|
||||
|
||||
ids = results["ids"][0]
|
||||
|
@ -355,3 +377,60 @@ class ChromaRetriever(BaseRetriever):
|
|||
)
|
||||
for idx in range(len(ids))
|
||||
]
|
||||
|
||||
|
||||
import operator
|
||||
|
||||
from typing import Optional, Sequence
|
||||
|
||||
from langchain_core.documents import BaseDocumentCompressor, Document
|
||||
from langchain_core.callbacks import Callbacks
|
||||
from langchain_core.pydantic_v1 import Extra
|
||||
|
||||
from sentence_transformers import util
|
||||
|
||||
|
||||
class RerankCompressor(BaseDocumentCompressor):
|
||||
embeddings_function: Any
|
||||
reranking_function: Any
|
||||
r_score: float
|
||||
top_n: int
|
||||
|
||||
class Config:
|
||||
extra = Extra.forbid
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
def compress_documents(
|
||||
self,
|
||||
documents: Sequence[Document],
|
||||
query: str,
|
||||
callbacks: Optional[Callbacks] = None,
|
||||
) -> Sequence[Document]:
|
||||
if self.reranking_function:
|
||||
scores = self.reranking_function.predict(
|
||||
[(query, doc.page_content) for doc in documents]
|
||||
)
|
||||
else:
|
||||
query_embedding = self.embeddings_function(query)
|
||||
document_embedding = self.embeddings_function(
|
||||
[doc.page_content for doc in documents]
|
||||
)
|
||||
scores = util.cos_sim(query_embedding, document_embedding)[0]
|
||||
|
||||
docs_with_scores = list(zip(documents, scores.tolist()))
|
||||
if self.r_score:
|
||||
docs_with_scores = [
|
||||
(d, s) for d, s in docs_with_scores if s >= self.r_score
|
||||
]
|
||||
|
||||
result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
|
||||
final_results = []
|
||||
for doc, doc_score in result[: self.top_n]:
|
||||
metadata = doc.metadata
|
||||
metadata["score"] = doc_score
|
||||
doc = Document(
|
||||
page_content=doc.page_content,
|
||||
metadata=metadata,
|
||||
)
|
||||
final_results.append(doc)
|
||||
return final_results
|
||||
|
|
|
@ -420,6 +420,9 @@ if WEBUI_AUTH and WEBUI_SECRET_KEY == "":
|
|||
CHROMA_DATA_PATH = f"{DATA_DIR}/vector_db"
|
||||
# this uses the model defined in the Dockerfile ENV variable. If you dont use docker or docker based deployments such as k8s, the default embedding model will be used (sentence-transformers/all-MiniLM-L6-v2)
|
||||
|
||||
RAG_TOP_K = int(os.environ.get("RAG_TOP_K", "5"))
|
||||
RAG_RELEVANCE_THRESHOLD = float(os.environ.get("RAG_RELEVANCE_THRESHOLD", "0.0"))
|
||||
|
||||
RAG_EMBEDDING_ENGINE = os.environ.get("RAG_EMBEDDING_ENGINE", "")
|
||||
|
||||
RAG_EMBEDDING_MODEL = os.environ.get(
|
||||
|
@ -431,9 +434,8 @@ RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE = (
|
|||
os.environ.get("RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE", "").lower() == "true"
|
||||
)
|
||||
|
||||
RAG_RERANKING_MODEL = os.environ.get(
|
||||
"RAG_RERANKING_MODEL", "BAAI/bge-reranker-v2-m3"
|
||||
)
|
||||
RAG_RERANKING_MODEL = os.environ.get("RAG_RERANKING_MODEL", "")
|
||||
if not RAG_RERANKING_MODEL == "":
|
||||
log.info(f"Reranking model set: {RAG_RERANKING_MODEL}"),
|
||||
|
||||
RAG_RERANKING_MODEL_TRUST_REMOTE_CODE = (
|
||||
|
@ -448,16 +450,15 @@ if USE_CUDA.lower() == "true":
|
|||
else:
|
||||
DEVICE_TYPE = "cpu"
|
||||
|
||||
|
||||
CHROMA_CLIENT = chromadb.PersistentClient(
|
||||
path=CHROMA_DATA_PATH,
|
||||
settings=Settings(allow_reset=True, anonymized_telemetry=False),
|
||||
)
|
||||
CHUNK_SIZE = 1500
|
||||
CHUNK_OVERLAP = 100
|
||||
|
||||
CHUNK_SIZE = int(os.environ.get("CHUNK_SIZE", "1500"))
|
||||
CHUNK_OVERLAP = int(os.environ.get("CHUNK_OVERLAP", "100"))
|
||||
|
||||
RAG_TEMPLATE = """Use the following context as your learned knowledge, inside <context></context> XML tags.
|
||||
DEFAULT_RAG_TEMPLATE = """Use the following context as your learned knowledge, inside <context></context> XML tags.
|
||||
<context>
|
||||
[context]
|
||||
</context>
|
||||
|
@ -471,6 +472,8 @@ And answer according to the language of the user's question.
|
|||
Given the context information, answer the query.
|
||||
Query: [query]"""
|
||||
|
||||
RAG_TEMPLATE = os.environ.get("RAG_TEMPLATE", DEFAULT_RAG_TEMPLATE)
|
||||
|
||||
RAG_OPENAI_API_BASE_URL = os.getenv("RAG_OPENAI_API_BASE_URL", OPENAI_API_BASE_URL)
|
||||
RAG_OPENAI_API_KEY = os.getenv("RAG_OPENAI_API_KEY", OPENAI_API_KEY)
|
||||
|
||||
|
|
|
@ -120,12 +120,13 @@ class RAGMiddleware(BaseHTTPMiddleware):
|
|||
data["messages"],
|
||||
rag_app.state.RAG_TEMPLATE,
|
||||
rag_app.state.TOP_K,
|
||||
rag_app.state.RELEVANCE_THRESHOLD,
|
||||
rag_app.state.RAG_EMBEDDING_ENGINE,
|
||||
rag_app.state.RAG_EMBEDDING_MODEL,
|
||||
rag_app.state.sentence_transformer_ef,
|
||||
rag_app.state.sentence_transformer_rf,
|
||||
rag_app.state.RAG_OPENAI_API_KEY,
|
||||
rag_app.state.RAG_OPENAI_API_BASE_URL,
|
||||
rag_app.state.OPENAI_API_KEY,
|
||||
rag_app.state.OPENAI_API_BASE_URL,
|
||||
)
|
||||
del data["docs"]
|
||||
|
||||
|
|
|
@ -123,6 +123,7 @@ export const getQuerySettings = async (token: string) => {
|
|||
|
||||
type QuerySettings = {
|
||||
k: number | null;
|
||||
r: number | null;
|
||||
template: string | null;
|
||||
};
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
import fileSaver from 'file-saver';
|
||||
const { saveAs } = fileSaver;
|
||||
|
||||
import { chats, user } from '$lib/stores';
|
||||
import { config, chats, user } from '$lib/stores';
|
||||
|
||||
import {
|
||||
createNewChat,
|
||||
|
|
|
@ -42,6 +42,7 @@
|
|||
|
||||
let querySettings = {
|
||||
template: '',
|
||||
r: 0.0,
|
||||
k: 4
|
||||
};
|
||||
|
||||
|
@ -124,7 +125,7 @@
|
|||
|
||||
updateRerankingModelLoading = true;
|
||||
const res = await updateRerankingConfig(localStorage.token, {
|
||||
reranking_model: rerankingModel,
|
||||
reranking_model: rerankingModel
|
||||
}).catch(async (error) => {
|
||||
toast.error(error);
|
||||
await setRerankingConfig();
|
||||
|
@ -450,6 +451,12 @@
|
|||
</div>
|
||||
</div>
|
||||
|
||||
<div class="mt-2 mb-1 text-xs text-gray-400 dark:text-gray-500">
|
||||
{$i18n.t(
|
||||
'Note: If you choose a reranking model, it will use that to score and rerank instead of the embedding model.'
|
||||
)}
|
||||
</div>
|
||||
|
||||
<hr class=" dark:border-gray-700 my-3" />
|
||||
|
||||
<div class=" flex w-full justify-between">
|
||||
|
@ -576,6 +583,26 @@
|
|||
</div>
|
||||
</div>
|
||||
|
||||
<div class=" flex">
|
||||
<div class=" flex w-full justify-between">
|
||||
<div class="self-center text-xs font-medium flex-1">
|
||||
{$i18n.t('Relevance Threshold')}
|
||||
</div>
|
||||
|
||||
<div class="self-center p-3">
|
||||
<input
|
||||
class=" w-full rounded-lg py-1.5 px-4 text-sm dark:text-gray-300 dark:bg-gray-850 outline-none"
|
||||
type="number"
|
||||
step="0.01"
|
||||
placeholder={$i18n.t('Enter Relevance Threshold')}
|
||||
bind:value={querySettings.r}
|
||||
autocomplete="off"
|
||||
min="0.0"
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div>
|
||||
<div class=" mb-2.5 text-sm font-medium">{$i18n.t('RAG Template')}</div>
|
||||
<textarea
|
||||
|
|
Loading…
Reference in a new issue