forked from open-webui/open-webui
		
	storing vectordb in project cache folder + device types
This commit is contained in:
		
							parent
							
								
									0cb0358485
								
							
						
					
					
						commit
						acf999013b
					
				
					 4 changed files with 24 additions and 5 deletions
				
			
		
							
								
								
									
										12
									
								
								Dockerfile
									
										
									
									
									
								
							
							
						
						
									
										12
									
								
								Dockerfile
									
										
									
									
									
								
							|  | @ -30,15 +30,21 @@ ENV WEBUI_SECRET_KEY "" | |||
| ENV SCARF_NO_ANALYTICS true | ||||
| ENV DO_NOT_TRACK true | ||||
| 
 | ||||
| ######## Preloaded models ######## | ||||
| # whisper TTS Settings | ||||
| ENV WHISPER_MODEL="base" | ||||
| ENV WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models" | ||||
| 
 | ||||
| # RAG Embedding Model Settings | ||||
| # any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers | ||||
| # Leaderboard: https://huggingface.co/spaces/mteb/leaderboard  | ||||
| # for better persormance and multilangauge support use "intfloat/multilingual-e5-large" | ||||
| # for better persormance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB) | ||||
| # IMPORTANT: If you change the default model (all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them. | ||||
| ENV RAG_EMBEDDING_MODEL="all-MiniLM-L6-v2" | ||||
| ENV SENTENCE_TRANSFORMERS_HOME="/app/backend/data/cache/embedding/models" | ||||
| # device type for whisper tts and ebbeding models - "cpu" (default), "cuda" (nvidia gpu and CUDA required) or "mps" (apple silicon) - choosing this right can lead to better performance | ||||
| ENV RAG_EMBEDDING_MODEL_DEVICE_TYPE="cpu" | ||||
| ######## Preloaded models ######## | ||||
| 
 | ||||
| WORKDIR /app/backend | ||||
| 
 | ||||
|  | @ -55,9 +61,9 @@ RUN apt-get update \ | |||
|     && rm -rf /var/lib/apt/lists/* | ||||
| 
 | ||||
| # preload embedding model | ||||
| RUN python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'])" | ||||
| RUN python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device=os.environ['RAG_EMBEDDING_MODEL_DEVICE_TYPE'])" | ||||
| # preload tts model | ||||
| RUN python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" | ||||
| RUN python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='auto', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" | ||||
| 
 | ||||
| 
 | ||||
| # copy embedding weight from build | ||||
|  |  | |||
|  | @ -56,7 +56,7 @@ def transcribe( | |||
| 
 | ||||
|         model = WhisperModel( | ||||
|             WHISPER_MODEL, | ||||
|             device="cpu", | ||||
|             device="auto", | ||||
|             compute_type="int8", | ||||
|             download_root=WHISPER_MODEL_DIR, | ||||
|         ) | ||||
|  |  | |||
|  | @ -13,6 +13,7 @@ import os, shutil | |||
| from pathlib import Path | ||||
| from typing import List | ||||
| 
 | ||||
| from sentence_transformers import SentenceTransformer | ||||
| from chromadb.utils import embedding_functions | ||||
| 
 | ||||
| from langchain_community.document_loaders import ( | ||||
|  | @ -52,6 +53,7 @@ from config import ( | |||
|     UPLOAD_DIR, | ||||
|     DOCS_DIR, | ||||
|     RAG_EMBEDDING_MODEL, | ||||
|     RAG_EMBEDDING_MODEL_DEVICE_TYPE, | ||||
|     CHROMA_CLIENT, | ||||
|     CHUNK_SIZE, | ||||
|     CHUNK_OVERLAP, | ||||
|  | @ -60,10 +62,18 @@ from config import ( | |||
| 
 | ||||
| from constants import ERROR_MESSAGES | ||||
| 
 | ||||
| # | ||||
| #if RAG_EMBEDDING_MODEL: | ||||
| #    sentence_transformer_ef = SentenceTransformer( | ||||
| #        model_name_or_path=RAG_EMBEDDING_MODEL, | ||||
| #        cache_folder=RAG_EMBEDDING_MODEL_DIR, | ||||
| #        device=RAG_EMBEDDING_MODEL_DEVICE_TYPE, | ||||
| #    ) | ||||
| 
 | ||||
| if RAG_EMBEDDING_MODEL: | ||||
|     sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction( | ||||
|         model_name=RAG_EMBEDDING_MODEL | ||||
|         model_name=RAG_EMBEDDING_MODEL, | ||||
|         device=RAG_EMBEDDING_MODEL_DEVICE_TYPE, | ||||
|     ) | ||||
| 
 | ||||
| app = FastAPI() | ||||
|  |  | |||
|  | @ -138,6 +138,9 @@ if WEBUI_AUTH and WEBUI_SECRET_KEY == "": | |||
| CHROMA_DATA_PATH = f"{DATA_DIR}/vector_db" | ||||
| # this uses the model defined in the Dockerfile ENV variable. If you dont use docker or docker based deployments such as k8s, the default embedding model will be used (all-MiniLM-L6-v2) | ||||
| RAG_EMBEDDING_MODEL = os.environ.get("RAG_EMBEDDING_MODEL", "") | ||||
| 
 | ||||
| # device type ebbeding models - "cpu" (default), "cuda" (nvidia gpu required) or "mps" (apple silicon) - choosing this right can lead to better performance | ||||
| RAG_EMBEDDING_MODEL_DEVICE_TYPE = os.environ.get("RAG_EMBEDDING_MODEL_DEVICE_TYPE", "") | ||||
| CHROMA_CLIENT = chromadb.PersistentClient( | ||||
|     path=CHROMA_DATA_PATH, | ||||
|     settings=Settings(allow_reset=True, anonymized_telemetry=False), | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue
	
	 Jannik Streidl
						Jannik Streidl