storing vectordb in project cache folder + device types

This commit is contained in:
Jannik Streidl 2024-02-19 07:51:17 +01:00
parent 0cb0358485
commit acf999013b
4 changed files with 24 additions and 5 deletions

View file

@ -56,7 +56,7 @@ def transcribe(
model = WhisperModel(
WHISPER_MODEL,
device="cpu",
device="auto",
compute_type="int8",
download_root=WHISPER_MODEL_DIR,
)

View file

@ -13,6 +13,7 @@ import os, shutil
from pathlib import Path
from typing import List
from sentence_transformers import SentenceTransformer
from chromadb.utils import embedding_functions
from langchain_community.document_loaders import (
@ -52,6 +53,7 @@ from config import (
UPLOAD_DIR,
DOCS_DIR,
RAG_EMBEDDING_MODEL,
RAG_EMBEDDING_MODEL_DEVICE_TYPE,
CHROMA_CLIENT,
CHUNK_SIZE,
CHUNK_OVERLAP,
@ -60,10 +62,18 @@ from config import (
from constants import ERROR_MESSAGES
#
#if RAG_EMBEDDING_MODEL:
# sentence_transformer_ef = SentenceTransformer(
# model_name_or_path=RAG_EMBEDDING_MODEL,
# cache_folder=RAG_EMBEDDING_MODEL_DIR,
# device=RAG_EMBEDDING_MODEL_DEVICE_TYPE,
# )
if RAG_EMBEDDING_MODEL:
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name=RAG_EMBEDDING_MODEL
model_name=RAG_EMBEDDING_MODEL,
device=RAG_EMBEDDING_MODEL_DEVICE_TYPE,
)
app = FastAPI()

View file

@ -138,6 +138,9 @@ if WEBUI_AUTH and WEBUI_SECRET_KEY == "":
CHROMA_DATA_PATH = f"{DATA_DIR}/vector_db"
# this uses the model defined in the Dockerfile ENV variable. If you dont use docker or docker based deployments such as k8s, the default embedding model will be used (all-MiniLM-L6-v2)
RAG_EMBEDDING_MODEL = os.environ.get("RAG_EMBEDDING_MODEL", "")
# device type ebbeding models - "cpu" (default), "cuda" (nvidia gpu required) or "mps" (apple silicon) - choosing this right can lead to better performance
RAG_EMBEDDING_MODEL_DEVICE_TYPE = os.environ.get("RAG_EMBEDDING_MODEL_DEVICE_TYPE", "")
CHROMA_CLIENT = chromadb.PersistentClient(
path=CHROMA_DATA_PATH,
settings=Settings(allow_reset=True, anonymized_telemetry=False),