Merge pull request #1292 from ddanat-smm/dev

Add htm/html support for RAG documents
This commit is contained in:
Timothy Jaeryang Baek 2024-03-25 23:51:20 -07:00 committed by GitHub
commit a1fc2f4df0
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 61 additions and 40 deletions

View file

@ -21,6 +21,7 @@ from langchain_community.document_loaders import (
TextLoader,
PyPDFLoader,
CSVLoader,
BSHTMLLoader,
Docx2txtLoader,
UnstructuredEPubLoader,
UnstructuredWordDocumentLoader,
@ -114,6 +115,7 @@ class CollectionNameForm(BaseModel):
class StoreWebForm(CollectionNameForm):
url: str
@app.get("/")
async def get_status():
return {
@ -296,13 +298,18 @@ def store_web(form_data: StoreWebForm, user=Depends(get_current_user)):
def store_data_in_vector_db(data, collection_name, overwrite: bool = False) -> bool:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=app.state.CHUNK_SIZE,
chunk_overlap=app.state.CHUNK_OVERLAP,
add_start_index=True,
)
docs = text_splitter.split_documents(data)
return store_docs_in_vector_db(docs, collection_name, overwrite)
if len(docs) > 0:
return store_docs_in_vector_db(docs, collection_name, overwrite), None
else:
raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT)
def store_text_in_vector_db(
@ -318,6 +325,7 @@ def store_text_in_vector_db(
def store_docs_in_vector_db(docs, collection_name, overwrite: bool = False) -> bool:
texts = [doc.page_content for doc in docs]
metadatas = [doc.metadata for doc in docs]
@ -402,6 +410,8 @@ def get_loader(filename: str, file_content_type: str, file_path: str):
loader = UnstructuredRSTLoader(file_path, mode="elements")
elif file_ext == "xml":
loader = UnstructuredXMLLoader(file_path)
elif file_ext in ["htm", "html"]:
loader = BSHTMLLoader(file_path, open_encoding="unicode_escape")
elif file_ext == "md":
loader = UnstructuredMarkdownLoader(file_path)
elif file_content_type == "application/epub+zip":
@ -452,6 +462,8 @@ def store_doc(
loader, known_type = get_loader(file.filename, file.content_type, file_path)
data = loader.load()
try:
result = store_data_in_vector_db(data, collection_name)
if result:
@ -461,10 +473,10 @@ def store_doc(
"filename": filename,
"known_type": known_type,
}
else:
except Exception as e:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=ERROR_MESSAGES.DEFAULT(),
detail=e,
)
except Exception as e:
log.exception(e)
@ -529,6 +541,7 @@ def scan_docs_dir(user=Depends(get_admin_user)):
)
data = loader.load()
try:
result = store_data_in_vector_db(data, collection_name)
if result:
@ -561,6 +574,9 @@ def scan_docs_dir(user=Depends(get_admin_user)):
}
),
)
except Exception as e:
print(e)
pass
except Exception as e:
log.exception(e)

View file

@ -60,3 +60,5 @@ class ERROR_MESSAGES(str, Enum):
MODEL_NOT_FOUND = lambda name="": f"Model '{name}' was not found"
OPENAI_NOT_FOUND = lambda name="": f"OpenAI API was not found"
OLLAMA_NOT_FOUND = "WebUI could not connect to Ollama"
EMPTY_CONTENT = "The content provided is empty. Please ensure that there is text or data present before proceeding."

View file

@ -22,6 +22,7 @@ export const SUPPORTED_FILE_TYPE = [
'text/plain',
'text/csv',
'text/xml',
'text/html',
'text/x-python',
'text/css',
'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
@ -50,6 +51,8 @@ export const SUPPORTED_FILE_EXTENSIONS = [
'h',
'c',
'cs',
'htm',
'html',
'sql',
'log',
'ini',