fixes and updates

This commit is contained in:
Jannik Streidl 2024-04-02 14:47:52 +02:00
commit 9bcb37ea10
6 changed files with 150 additions and 81 deletions

View file

@ -28,6 +28,7 @@ from config import (
UPLOAD_DIR,
WHISPER_MODEL,
WHISPER_MODEL_DIR,
DEVICE_TYPE,
)
log = logging.getLogger(__name__)
@ -42,6 +43,10 @@ app.add_middleware(
allow_headers=["*"],
)
# setting device type for whisper model
whisper_device_type = DEVICE_TYPE if DEVICE_TYPE and DEVICE_TYPE == "cuda" else "cpu"
log.info(f"whisper_device_type: {whisper_device_type}")
@app.post("/transcribe")
def transcribe(
@ -66,7 +71,7 @@ def transcribe(
model = WhisperModel(
WHISPER_MODEL,
device="auto",
device=whisper_device_type,
compute_type="int8",
download_root=WHISPER_MODEL_DIR,
)

View file

@ -59,7 +59,7 @@ from config import (
UPLOAD_DIR,
DOCS_DIR,
RAG_EMBEDDING_MODEL,
RAG_EMBEDDING_MODEL_DEVICE_TYPE,
DEVICE_TYPE,
CHROMA_CLIENT,
CHUNK_SIZE,
CHUNK_OVERLAP,
@ -71,15 +71,6 @@ from constants import ERROR_MESSAGES
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
#
# if RAG_EMBEDDING_MODEL:
# sentence_transformer_ef = SentenceTransformer(
# model_name_or_path=RAG_EMBEDDING_MODEL,
# cache_folder=RAG_EMBEDDING_MODEL_DIR,
# device=RAG_EMBEDDING_MODEL_DEVICE_TYPE,
# )
app = FastAPI()
app.state.PDF_EXTRACT_IMAGES = False
@ -92,7 +83,7 @@ app.state.TOP_K = 4
app.state.sentence_transformer_ef = (
embedding_functions.SentenceTransformerEmbeddingFunction(
model_name=app.state.RAG_EMBEDDING_MODEL,
device=RAG_EMBEDDING_MODEL_DEVICE_TYPE,
device=DEVICE_TYPE,
)
)
@ -147,10 +138,9 @@ async def update_embedding_model(
app.state.sentence_transformer_ef = (
embedding_functions.SentenceTransformerEmbeddingFunction(
model_name=app.state.RAG_EMBEDDING_MODEL,
device=RAG_EMBEDDING_MODEL_DEVICE_TYPE,
device=DEVICE_TYPE,
)
)
return {
"status": True,
"embedding_model": app.state.RAG_EMBEDDING_MODEL,

View file

@ -253,6 +253,8 @@ OLLAMA_API_BASE_URL = os.environ.get(
OLLAMA_BASE_URL = os.environ.get("OLLAMA_BASE_URL", "")
K8S_FLAG = os.environ.get("K8S_FLAG", "")
USE_OLLAMA_DOCKER = os.environ.get("USE_OLLAMA_DOCKER", "false")
if OLLAMA_BASE_URL == "" and OLLAMA_API_BASE_URL != "":
OLLAMA_BASE_URL = (
@ -263,7 +265,12 @@ if OLLAMA_BASE_URL == "" and OLLAMA_API_BASE_URL != "":
if ENV == "prod":
if OLLAMA_BASE_URL == "/ollama":
OLLAMA_BASE_URL = "http://host.docker.internal:11434"
if USE_OLLAMA_DOCKER.lower() == "true":
# if you use all-in-one docker container (Open WebUI + Ollama)
# with the docker build arg USE_OLLAMA=true (--build-arg="USE_OLLAMA=true") this only works with http://localhost:11434
OLLAMA_BASE_URL = "http://localhost:11434"
else:
OLLAMA_BASE_URL = "http://host.docker.internal:11434"
elif K8S_FLAG:
OLLAMA_BASE_URL = "http://ollama-service.open-webui.svc.cluster.local:11434"
@ -384,10 +391,16 @@ if WEBUI_AUTH and WEBUI_SECRET_KEY == "":
CHROMA_DATA_PATH = f"{DATA_DIR}/vector_db"
# this uses the model defined in the Dockerfile ENV variable. If you dont use docker or docker based deployments such as k8s, the default embedding model will be used (all-MiniLM-L6-v2)
RAG_EMBEDDING_MODEL = os.environ.get("RAG_EMBEDDING_MODEL", "all-MiniLM-L6-v2")
log.info(f"Embedding model set: {RAG_EMBEDDING_MODEL}"),
# device type ebbeding models - "cpu" (default), "cuda" (nvidia gpu required) or "mps" (apple silicon) - choosing this right can lead to better performance
RAG_EMBEDDING_MODEL_DEVICE_TYPE = os.environ.get(
"RAG_EMBEDDING_MODEL_DEVICE_TYPE", "cpu"
)
USE_CUDA = os.environ.get("USE_CUDA_DOCKER", "false")
if USE_CUDA.lower() == "true":
DEVICE_TYPE = "cuda"
else:
DEVICE_TYPE = "cpu"
CHROMA_CLIENT = chromadb.PersistentClient(
path=CHROMA_DATA_PATH,
settings=Settings(allow_reset=True, anonymized_telemetry=False),

View file

@ -7,16 +7,26 @@ KEY_FILE=.webui_secret_key
PORT="${PORT:-8080}"
if test "$WEBUI_SECRET_KEY $WEBUI_JWT_SECRET_KEY" = " "; then
echo No WEBUI_SECRET_KEY provided
echo "No WEBUI_SECRET_KEY provided"
if ! [ -e "$KEY_FILE" ]; then
echo Generating WEBUI_SECRET_KEY
echo "Generating WEBUI_SECRET_KEY"
# Generate a random value to use as a WEBUI_SECRET_KEY in case the user didn't provide one.
echo $(head -c 12 /dev/random | base64) > $KEY_FILE
echo $(head -c 12 /dev/random | base64) > "$KEY_FILE"
fi
echo Loading WEBUI_SECRET_KEY from $KEY_FILE
WEBUI_SECRET_KEY=`cat $KEY_FILE`
echo "Loading WEBUI_SECRET_KEY from $KEY_FILE"
WEBUI_SECRET_KEY=$(cat "$KEY_FILE")
fi
WEBUI_SECRET_KEY="$WEBUI_SECRET_KEY" exec uvicorn main:app --host 0.0.0.0 --port "$PORT" --forwarded-allow-ips '*'
if [ "$USE_OLLAMA_DOCKER" = "true" ]; then
echo "USE_OLLAMA is set to true, starting ollama serve."
ollama serve &
fi
if [ "$USE_CUDA_DOCKER" = "true" ]; then
echo "CUDA is enabled, appending LD_LIBRARY_PATH to include torch/cudnn & cublas libraries."
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/lib/python3.11/site-packages/torch/lib:/usr/local/lib/python3.11/site-packages/nvidia/cublas/lib"
fi
WEBUI_SECRET_KEY="$WEBUI_SECRET_KEY" exec uvicorn main:app --host 0.0.0.0 --port "$PORT" --forwarded-allow-ips '*'