forked from open-webui/open-webui
feat: dynamic embedding model load
This commit is contained in:
parent
ab104d5905
commit
7c127c35fc
1 changed files with 56 additions and 36 deletions
|
@ -35,6 +35,8 @@ from pydantic import BaseModel
|
|||
from typing import Optional
|
||||
import mimetypes
|
||||
import uuid
|
||||
import json
|
||||
|
||||
|
||||
from apps.web.models.documents import (
|
||||
Documents,
|
||||
|
@ -70,17 +72,19 @@ from constants import ERROR_MESSAGES
|
|||
# device=RAG_EMBEDDING_MODEL_DEVICE_TYPE,
|
||||
# )
|
||||
|
||||
if RAG_EMBEDDING_MODEL:
|
||||
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
|
||||
model_name=RAG_EMBEDDING_MODEL,
|
||||
device=RAG_EMBEDDING_MODEL_DEVICE_TYPE,
|
||||
)
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
app.state.CHUNK_SIZE = CHUNK_SIZE
|
||||
app.state.CHUNK_OVERLAP = CHUNK_OVERLAP
|
||||
app.state.RAG_TEMPLATE = RAG_TEMPLATE
|
||||
app.state.RAG_EMBEDDING_MODEL = RAG_EMBEDDING_MODEL
|
||||
app.state.sentence_transformer_ef = (
|
||||
embedding_functions.SentenceTransformerEmbeddingFunction(
|
||||
model_name=app.state.RAG_EMBEDDING_MODEL,
|
||||
device=RAG_EMBEDDING_MODEL_DEVICE_TYPE,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
origins = ["*"]
|
||||
|
@ -112,14 +116,10 @@ def store_data_in_vector_db(data, collection_name) -> bool:
|
|||
metadatas = [doc.metadata for doc in docs]
|
||||
|
||||
try:
|
||||
if RAG_EMBEDDING_MODEL:
|
||||
# if you use docker use the model from the environment variable
|
||||
collection = CHROMA_CLIENT.create_collection(
|
||||
name=collection_name, embedding_function=sentence_transformer_ef
|
||||
name=collection_name,
|
||||
embedding_function=app.state.sentence_transformer_ef,
|
||||
)
|
||||
else:
|
||||
# for local development use the default model
|
||||
collection = CHROMA_CLIENT.create_collection(name=collection_name)
|
||||
|
||||
collection.add(
|
||||
documents=texts, metadatas=metadatas, ids=[str(uuid.uuid1()) for _ in texts]
|
||||
|
@ -139,6 +139,38 @@ async def get_status():
|
|||
"status": True,
|
||||
"chunk_size": app.state.CHUNK_SIZE,
|
||||
"chunk_overlap": app.state.CHUNK_OVERLAP,
|
||||
"template": app.state.RAG_TEMPLATE,
|
||||
"embedding_model": app.state.RAG_EMBEDDING_MODEL,
|
||||
}
|
||||
|
||||
|
||||
@app.get("/embedding/model")
|
||||
async def get_embedding_model(user=Depends(get_admin_user)):
|
||||
return {
|
||||
"status": True,
|
||||
"embedding_model": app.state.RAG_EMBEDDING_MODEL,
|
||||
}
|
||||
|
||||
|
||||
class EmbeddingModelUpdateForm(BaseModel):
|
||||
embedding_model: str
|
||||
|
||||
|
||||
@app.post("/embedding/model/update")
|
||||
async def update_embedding_model(
|
||||
form_data: EmbeddingModelUpdateForm, user=Depends(get_admin_user)
|
||||
):
|
||||
app.state.RAG_EMBEDDING_MODEL = form_data.embedding_model
|
||||
app.state.sentence_transformer_ef = (
|
||||
embedding_functions.SentenceTransformerEmbeddingFunction(
|
||||
model_name=app.state.RAG_EMBEDDING_MODEL,
|
||||
device=RAG_EMBEDDING_MODEL_DEVICE_TYPE,
|
||||
)
|
||||
)
|
||||
|
||||
return {
|
||||
"status": True,
|
||||
"embedding_model": app.state.RAG_EMBEDDING_MODEL,
|
||||
}
|
||||
|
||||
|
||||
|
@ -203,16 +235,10 @@ def query_doc(
|
|||
user=Depends(get_current_user),
|
||||
):
|
||||
try:
|
||||
if RAG_EMBEDDING_MODEL:
|
||||
# if you use docker use the model from the environment variable
|
||||
collection = CHROMA_CLIENT.get_collection(
|
||||
name=form_data.collection_name,
|
||||
embedding_function=sentence_transformer_ef,
|
||||
)
|
||||
else:
|
||||
# for local development use the default model
|
||||
collection = CHROMA_CLIENT.get_collection(
|
||||
name=form_data.collection_name,
|
||||
embedding_function=app.state.sentence_transformer_ef,
|
||||
)
|
||||
result = collection.query(query_texts=[form_data.query], n_results=form_data.k)
|
||||
return result
|
||||
|
@ -284,16 +310,10 @@ def query_collection(
|
|||
|
||||
for collection_name in form_data.collection_names:
|
||||
try:
|
||||
if RAG_EMBEDDING_MODEL:
|
||||
# if you use docker use the model from the environment variable
|
||||
collection = CHROMA_CLIENT.get_collection(
|
||||
name=collection_name,
|
||||
embedding_function=sentence_transformer_ef,
|
||||
)
|
||||
else:
|
||||
# for local development use the default model
|
||||
collection = CHROMA_CLIENT.get_collection(
|
||||
name=collection_name,
|
||||
embedding_function=app.state.sentence_transformer_ef,
|
||||
)
|
||||
|
||||
result = collection.query(
|
||||
|
|
Loading…
Reference in a new issue