refac: audio

This commit is contained in:
Timothy J. Baek 2024-04-20 15:15:59 -05:00
parent 2a10438b4d
commit 710850e442
7 changed files with 133 additions and 9 deletions

View file

@ -10,9 +10,18 @@ from fastapi import (
File,
Form,
)
from fastapi.responses import StreamingResponse, JSONResponse, FileResponse
from fastapi.middleware.cors import CORSMiddleware
from faster_whisper import WhisperModel
import requests
import hashlib
from pathlib import Path
import json
from constants import ERROR_MESSAGES
from utils.utils import (
decode_token,
@ -30,6 +39,8 @@ from config import (
WHISPER_MODEL_DIR,
WHISPER_MODEL_AUTO_UPDATE,
DEVICE_TYPE,
OPENAI_API_BASE_URL,
OPENAI_API_KEY,
)
log = logging.getLogger(__name__)
@ -44,12 +55,78 @@ app.add_middleware(
allow_headers=["*"],
)
app.state.OPENAI_API_BASE_URL = OPENAI_API_BASE_URL
app.state.OPENAI_API_KEY = OPENAI_API_KEY
# setting device type for whisper model
whisper_device_type = DEVICE_TYPE if DEVICE_TYPE and DEVICE_TYPE == "cuda" else "cpu"
log.info(f"whisper_device_type: {whisper_device_type}")
SPEECH_CACHE_DIR = Path(CACHE_DIR).joinpath("./audio/speech/")
SPEECH_CACHE_DIR.mkdir(parents=True, exist_ok=True)
@app.post("/transcribe")
@app.post("/speech")
async def speech(request: Request, user=Depends(get_verified_user)):
idx = None
try:
body = await request.body()
name = hashlib.sha256(body).hexdigest()
file_path = SPEECH_CACHE_DIR.joinpath(f"{name}.mp3")
file_body_path = SPEECH_CACHE_DIR.joinpath(f"{name}.json")
# Check if the file already exists in the cache
if file_path.is_file():
return FileResponse(file_path)
headers = {}
headers["Authorization"] = f"Bearer {app.state.OPENAI_API_KEY}"
headers["Content-Type"] = "application/json"
r = None
try:
r = requests.post(
url=f"{app.state.OPENAI_API_BASE_URL}/audio/speech",
data=body,
headers=headers,
stream=True,
)
r.raise_for_status()
# Save the streaming content to a file
with open(file_path, "wb") as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
with open(file_body_path, "w") as f:
json.dump(json.loads(body.decode("utf-8")), f)
# Return the saved file
return FileResponse(file_path)
except Exception as e:
log.exception(e)
error_detail = "Open WebUI: Server Connection Error"
if r is not None:
try:
res = r.json()
if "error" in res:
error_detail = f"External: {res['error']}"
except:
error_detail = f"External: {e}"
raise HTTPException(
status_code=r.status_code if r else 500, detail=error_detail
)
except ValueError:
raise HTTPException(status_code=401, detail=ERROR_MESSAGES.OPENAI_NOT_FOUND)
@app.post("/transcriptions")
def transcribe(
file: UploadFile = File(...),
user=Depends(get_current_user),

View file

@ -35,6 +35,8 @@ from config import (
ENABLE_IMAGE_GENERATION,
AUTOMATIC1111_BASE_URL,
COMFYUI_BASE_URL,
OPENAI_API_BASE_URL,
OPENAI_API_KEY,
)
@ -56,7 +58,9 @@ app.add_middleware(
app.state.ENGINE = ""
app.state.ENABLED = ENABLE_IMAGE_GENERATION
app.state.OPENAI_API_KEY = ""
app.state.OPENAI_API_BASE_URL = OPENAI_API_BASE_URL
app.state.OPENAI_API_KEY = OPENAI_API_KEY
app.state.MODEL = ""
@ -360,7 +364,7 @@ def generate_image(
}
r = requests.post(
url=f"https://api.openai.com/v1/images/generations",
url=f"{app.state.OPENAI_API_BASE_URL}/images/generations",
json=data,
headers=headers,
)

View file

@ -70,6 +70,8 @@ from config import (
RAG_EMBEDDING_ENGINE,
RAG_EMBEDDING_MODEL,
RAG_EMBEDDING_MODEL_AUTO_UPDATE,
RAG_OPENAI_API_BASE_URL,
RAG_OPENAI_API_KEY,
DEVICE_TYPE,
CHROMA_CLIENT,
CHUNK_SIZE,
@ -94,8 +96,8 @@ app.state.RAG_EMBEDDING_ENGINE = RAG_EMBEDDING_ENGINE
app.state.RAG_EMBEDDING_MODEL = RAG_EMBEDDING_MODEL
app.state.RAG_TEMPLATE = RAG_TEMPLATE
app.state.RAG_OPENAI_API_BASE_URL = "https://api.openai.com"
app.state.RAG_OPENAI_API_KEY = ""
app.state.RAG_OPENAI_API_BASE_URL = RAG_OPENAI_API_BASE_URL
app.state.RAG_OPENAI_API_KEY = RAG_OPENAI_API_KEY
app.state.PDF_EXTRACT_IMAGES = False

View file

@ -324,11 +324,11 @@ def get_embedding_model_path(
def generate_openai_embeddings(
model: str, text: str, key: str, url: str = "https://api.openai.com"
model: str, text: str, key: str, url: str = "https://api.openai.com/v1"
):
try:
r = requests.post(
f"{url}/v1/embeddings",
f"{url}/embeddings",
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {key}",

View file

@ -321,6 +321,13 @@ OPENAI_API_BASE_URLS = [
for url in OPENAI_API_BASE_URLS.split(";")
]
OPENAI_API_KEY = ""
OPENAI_API_KEY = OPENAI_API_KEYS[
OPENAI_API_BASE_URLS.index("https://api.openai.com/v1")
]
OPENAI_API_BASE_URL = "https://api.openai.com/v1"
####################################
# WEBUI
####################################
@ -447,6 +454,9 @@ And answer according to the language of the user's question.
Given the context information, answer the query.
Query: [query]"""
RAG_OPENAI_API_BASE_URL = os.getenv("RAG_OPENAI_API_BASE_URL", OPENAI_API_BASE_URL)
RAG_OPENAI_API_KEY = os.getenv("RAG_OPENAI_API_KEY", OPENAI_API_KEY)
####################################
# Transcribe
####################################

View file

@ -5,7 +5,7 @@ export const transcribeAudio = async (token: string, file: File) => {
data.append('file', file);
let error = null;
const res = await fetch(`${AUDIO_API_BASE_URL}/transcribe`, {
const res = await fetch(`${AUDIO_API_BASE_URL}/transcriptions`, {
method: 'POST',
headers: {
Accept: 'application/json',
@ -29,3 +29,34 @@ export const transcribeAudio = async (token: string, file: File) => {
return res;
};
export const synthesizeOpenAISpeech = async (
token: string = '',
speaker: string = 'alloy',
text: string = ''
) => {
let error = null;
const res = await fetch(`${AUDIO_API_BASE_URL}/speech`, {
method: 'POST',
headers: {
Authorization: `Bearer ${token}`,
'Content-Type': 'application/json'
},
body: JSON.stringify({
model: 'tts-1',
input: text,
voice: speaker
})
}).catch((err) => {
console.log(err);
error = err;
return null;
});
if (error) {
throw error;
}
return res;
};

View file

@ -15,7 +15,7 @@
const dispatch = createEventDispatcher();
import { config, settings } from '$lib/stores';
import { synthesizeOpenAISpeech } from '$lib/apis/openai';
import { synthesizeOpenAISpeech } from '$lib/apis/audio';
import { imageGenerations } from '$lib/apis/images';
import {
approximateToHumanReadable,