forked from open-webui/open-webui
		
	Merge pull request #1693 from buroa/buroa/hybrid-search
feat: hybrid search with reranking
This commit is contained in:
		
						commit
						5ee2f1729a
					
				
					 8 changed files with 655 additions and 176 deletions
				
			
		|  | @ -5,6 +5,10 @@ All notable changes to this project will be documented in this file. | ||||||
| The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.1.0/), | The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.1.0/), | ||||||
| and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). | and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). | ||||||
| 
 | 
 | ||||||
|  | ## [0.1.122] - 2024-04-24 | ||||||
|  | 
 | ||||||
|  | - **🌟 Enhanced RAG Pipeline**: Added hybrid searching with `BM25`, reranking using `CrossEncoder`, and relevance score thresholds. | ||||||
|  | 
 | ||||||
| ## [0.1.121] - 2024-04-24 | ## [0.1.121] - 2024-04-24 | ||||||
| 
 | 
 | ||||||
| ### Fixed | ### Fixed | ||||||
|  |  | ||||||
							
								
								
									
										12
									
								
								Dockerfile
									
										
									
									
									
								
							
							
						
						
									
										12
									
								
								Dockerfile
									
										
									
									
									
								
							|  | @ -8,8 +8,9 @@ ARG USE_CUDA_VER=cu121 | ||||||
| # any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers | # any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers | ||||||
| # Leaderboard: https://huggingface.co/spaces/mteb/leaderboard  | # Leaderboard: https://huggingface.co/spaces/mteb/leaderboard  | ||||||
| # for better performance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB) | # for better performance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB) | ||||||
| # IMPORTANT: If you change the default model (sentence-transformers/all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them. | # IMPORTANT: If you change the embedding model (sentence-transformers/all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them. | ||||||
| ARG USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 | ARG USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 | ||||||
|  | ARG USE_RERANKING_MODEL="" | ||||||
| 
 | 
 | ||||||
| ######## WebUI frontend ######## | ######## WebUI frontend ######## | ||||||
| FROM --platform=$BUILDPLATFORM node:21-alpine3.19 as build | FROM --platform=$BUILDPLATFORM node:21-alpine3.19 as build | ||||||
|  | @ -30,6 +31,7 @@ ARG USE_CUDA | ||||||
| ARG USE_OLLAMA | ARG USE_OLLAMA | ||||||
| ARG USE_CUDA_VER | ARG USE_CUDA_VER | ||||||
| ARG USE_EMBEDDING_MODEL | ARG USE_EMBEDDING_MODEL | ||||||
|  | ARG USE_RERANKING_MODEL | ||||||
| 
 | 
 | ||||||
| ## Basis ## | ## Basis ## | ||||||
| ENV ENV=prod \ | ENV ENV=prod \ | ||||||
|  | @ -38,7 +40,8 @@ ENV ENV=prod \ | ||||||
|     USE_OLLAMA_DOCKER=${USE_OLLAMA} \ |     USE_OLLAMA_DOCKER=${USE_OLLAMA} \ | ||||||
|     USE_CUDA_DOCKER=${USE_CUDA} \ |     USE_CUDA_DOCKER=${USE_CUDA} \ | ||||||
|     USE_CUDA_DOCKER_VER=${USE_CUDA_VER} \ |     USE_CUDA_DOCKER_VER=${USE_CUDA_VER} \ | ||||||
|     USE_EMBEDDING_MODEL_DOCKER=${USE_EMBEDDING_MODEL} |     USE_EMBEDDING_MODEL_DOCKER=${USE_EMBEDDING_MODEL} \ | ||||||
|  |     USE_RERANKING_MODEL_DOCKER=${USE_RERANKING_MODEL} | ||||||
| 
 | 
 | ||||||
| ## Basis URL Config ## | ## Basis URL Config ## | ||||||
| ENV OLLAMA_BASE_URL="/ollama" \ | ENV OLLAMA_BASE_URL="/ollama" \ | ||||||
|  | @ -62,8 +65,11 @@ ENV WHISPER_MODEL="base" \ | ||||||
| 
 | 
 | ||||||
| ## RAG Embedding model settings ## | ## RAG Embedding model settings ## | ||||||
| ENV RAG_EMBEDDING_MODEL="$USE_EMBEDDING_MODEL_DOCKER" \ | ENV RAG_EMBEDDING_MODEL="$USE_EMBEDDING_MODEL_DOCKER" \ | ||||||
|     RAG_EMBEDDING_MODEL_DIR="/app/backend/data/cache/embedding/models" \ |     RAG_RERANKING_MODEL="$USE_RERANKING_MODEL_DOCKER" \ | ||||||
|     SENTENCE_TRANSFORMERS_HOME="/app/backend/data/cache/embedding/models" |     SENTENCE_TRANSFORMERS_HOME="/app/backend/data/cache/embedding/models" | ||||||
|  | 
 | ||||||
|  | ## Hugging Face download cache ## | ||||||
|  | ENV HF_HOME="/app/backend/data/cache/embedding/models" | ||||||
| #### Other models ########################################################## | #### Other models ########################################################## | ||||||
| 
 | 
 | ||||||
| WORKDIR /app/backend | WORKDIR /app/backend | ||||||
|  |  | ||||||
|  | @ -39,8 +39,6 @@ import json | ||||||
| 
 | 
 | ||||||
| import sentence_transformers | import sentence_transformers | ||||||
| 
 | 
 | ||||||
| from apps.ollama.main import generate_ollama_embeddings, GenerateEmbeddingsForm |  | ||||||
| 
 |  | ||||||
| from apps.web.models.documents import ( | from apps.web.models.documents import ( | ||||||
|     Documents, |     Documents, | ||||||
|     DocumentForm, |     DocumentForm, | ||||||
|  | @ -48,9 +46,10 @@ from apps.web.models.documents import ( | ||||||
| ) | ) | ||||||
| 
 | 
 | ||||||
| from apps.rag.utils import ( | from apps.rag.utils import ( | ||||||
|  |     get_model_path, | ||||||
|     query_embeddings_doc, |     query_embeddings_doc, | ||||||
|  |     query_embeddings_function, | ||||||
|     query_embeddings_collection, |     query_embeddings_collection, | ||||||
|     generate_openai_embeddings, |  | ||||||
| ) | ) | ||||||
| 
 | 
 | ||||||
| from utils.misc import ( | from utils.misc import ( | ||||||
|  | @ -60,13 +59,20 @@ from utils.misc import ( | ||||||
|     extract_folders_after_data_docs, |     extract_folders_after_data_docs, | ||||||
| ) | ) | ||||||
| from utils.utils import get_current_user, get_admin_user | from utils.utils import get_current_user, get_admin_user | ||||||
|  | 
 | ||||||
| from config import ( | from config import ( | ||||||
|     SRC_LOG_LEVELS, |     SRC_LOG_LEVELS, | ||||||
|     UPLOAD_DIR, |     UPLOAD_DIR, | ||||||
|     DOCS_DIR, |     DOCS_DIR, | ||||||
|  |     RAG_TOP_K, | ||||||
|  |     RAG_RELEVANCE_THRESHOLD, | ||||||
|     RAG_EMBEDDING_ENGINE, |     RAG_EMBEDDING_ENGINE, | ||||||
|     RAG_EMBEDDING_MODEL, |     RAG_EMBEDDING_MODEL, | ||||||
|  |     RAG_EMBEDDING_MODEL_AUTO_UPDATE, | ||||||
|     RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE, |     RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE, | ||||||
|  |     RAG_RERANKING_MODEL, | ||||||
|  |     RAG_RERANKING_MODEL_AUTO_UPDATE, | ||||||
|  |     RAG_RERANKING_MODEL_TRUST_REMOTE_CODE, | ||||||
|     RAG_OPENAI_API_BASE_URL, |     RAG_OPENAI_API_BASE_URL, | ||||||
|     RAG_OPENAI_API_KEY, |     RAG_OPENAI_API_KEY, | ||||||
|     DEVICE_TYPE, |     DEVICE_TYPE, | ||||||
|  | @ -83,14 +89,14 @@ log.setLevel(SRC_LOG_LEVELS["RAG"]) | ||||||
| 
 | 
 | ||||||
| app = FastAPI() | app = FastAPI() | ||||||
| 
 | 
 | ||||||
| 
 | app.state.TOP_K = RAG_TOP_K | ||||||
| app.state.TOP_K = 4 | app.state.RELEVANCE_THRESHOLD = RAG_RELEVANCE_THRESHOLD | ||||||
| app.state.CHUNK_SIZE = CHUNK_SIZE | app.state.CHUNK_SIZE = CHUNK_SIZE | ||||||
| app.state.CHUNK_OVERLAP = CHUNK_OVERLAP | app.state.CHUNK_OVERLAP = CHUNK_OVERLAP | ||||||
| 
 | 
 | ||||||
| 
 |  | ||||||
| app.state.RAG_EMBEDDING_ENGINE = RAG_EMBEDDING_ENGINE | app.state.RAG_EMBEDDING_ENGINE = RAG_EMBEDDING_ENGINE | ||||||
| app.state.RAG_EMBEDDING_MODEL = RAG_EMBEDDING_MODEL | app.state.RAG_EMBEDDING_MODEL = RAG_EMBEDDING_MODEL | ||||||
|  | app.state.RAG_RERANKING_MODEL = RAG_RERANKING_MODEL | ||||||
| app.state.RAG_TEMPLATE = RAG_TEMPLATE | app.state.RAG_TEMPLATE = RAG_TEMPLATE | ||||||
| 
 | 
 | ||||||
| app.state.OPENAI_API_BASE_URL = RAG_OPENAI_API_BASE_URL | app.state.OPENAI_API_BASE_URL = RAG_OPENAI_API_BASE_URL | ||||||
|  | @ -98,16 +104,48 @@ app.state.OPENAI_API_KEY = RAG_OPENAI_API_KEY | ||||||
| 
 | 
 | ||||||
| app.state.PDF_EXTRACT_IMAGES = False | app.state.PDF_EXTRACT_IMAGES = False | ||||||
| 
 | 
 | ||||||
| if app.state.RAG_EMBEDDING_ENGINE == "": |  | ||||||
|     app.state.sentence_transformer_ef = sentence_transformers.SentenceTransformer( |  | ||||||
|         app.state.RAG_EMBEDDING_MODEL, |  | ||||||
|         device=DEVICE_TYPE, |  | ||||||
|         trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE, |  | ||||||
|     ) |  | ||||||
| 
 | 
 | ||||||
|  | def update_embedding_model( | ||||||
|  |     embedding_model: str, | ||||||
|  |     update_model: bool = False, | ||||||
|  | ): | ||||||
|  |     if embedding_model and app.state.RAG_EMBEDDING_ENGINE == "": | ||||||
|  |         app.state.sentence_transformer_ef = sentence_transformers.SentenceTransformer( | ||||||
|  |             get_model_path(embedding_model, update_model), | ||||||
|  |             device=DEVICE_TYPE, | ||||||
|  |             trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE, | ||||||
|  |         ) | ||||||
|  |     else: | ||||||
|  |         app.state.sentence_transformer_ef = None | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def update_reranking_model( | ||||||
|  |     reranking_model: str, | ||||||
|  |     update_model: bool = False, | ||||||
|  | ): | ||||||
|  |     if reranking_model: | ||||||
|  |         app.state.sentence_transformer_rf = sentence_transformers.CrossEncoder( | ||||||
|  |             get_model_path(reranking_model, update_model), | ||||||
|  |             device=DEVICE_TYPE, | ||||||
|  |             trust_remote_code=RAG_RERANKING_MODEL_TRUST_REMOTE_CODE, | ||||||
|  |         ) | ||||||
|  |     else: | ||||||
|  |         app.state.sentence_transformer_rf = None | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | update_embedding_model( | ||||||
|  |     app.state.RAG_EMBEDDING_MODEL, | ||||||
|  |     RAG_EMBEDDING_MODEL_AUTO_UPDATE, | ||||||
|  | ) | ||||||
|  | 
 | ||||||
|  | update_reranking_model( | ||||||
|  |     app.state.RAG_RERANKING_MODEL, | ||||||
|  |     RAG_RERANKING_MODEL_AUTO_UPDATE, | ||||||
|  | ) | ||||||
| 
 | 
 | ||||||
| origins = ["*"] | origins = ["*"] | ||||||
| 
 | 
 | ||||||
|  | 
 | ||||||
| app.add_middleware( | app.add_middleware( | ||||||
|     CORSMiddleware, |     CORSMiddleware, | ||||||
|     allow_origins=origins, |     allow_origins=origins, | ||||||
|  | @ -134,6 +172,7 @@ async def get_status(): | ||||||
|         "template": app.state.RAG_TEMPLATE, |         "template": app.state.RAG_TEMPLATE, | ||||||
|         "embedding_engine": app.state.RAG_EMBEDDING_ENGINE, |         "embedding_engine": app.state.RAG_EMBEDDING_ENGINE, | ||||||
|         "embedding_model": app.state.RAG_EMBEDDING_MODEL, |         "embedding_model": app.state.RAG_EMBEDDING_MODEL, | ||||||
|  |         "reranking_model": app.state.RAG_RERANKING_MODEL, | ||||||
|     } |     } | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
|  | @ -150,6 +189,11 @@ async def get_embedding_config(user=Depends(get_admin_user)): | ||||||
|     } |     } | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
|  | @app.get("/reranking") | ||||||
|  | async def get_reraanking_config(user=Depends(get_admin_user)): | ||||||
|  |     return {"status": True, "reranking_model": app.state.RAG_RERANKING_MODEL} | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
| class OpenAIConfigForm(BaseModel): | class OpenAIConfigForm(BaseModel): | ||||||
|     url: str |     url: str | ||||||
|     key: str |     key: str | ||||||
|  | @ -170,22 +214,14 @@ async def update_embedding_config( | ||||||
|     ) |     ) | ||||||
|     try: |     try: | ||||||
|         app.state.RAG_EMBEDDING_ENGINE = form_data.embedding_engine |         app.state.RAG_EMBEDDING_ENGINE = form_data.embedding_engine | ||||||
|  |         app.state.RAG_EMBEDDING_MODEL = form_data.embedding_model | ||||||
| 
 | 
 | ||||||
|         if app.state.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]: |         if app.state.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]: | ||||||
|             app.state.RAG_EMBEDDING_MODEL = form_data.embedding_model |  | ||||||
|             app.state.sentence_transformer_ef = None |  | ||||||
| 
 |  | ||||||
|             if form_data.openai_config != None: |             if form_data.openai_config != None: | ||||||
|                 app.state.OPENAI_API_BASE_URL = form_data.openai_config.url |                 app.state.OPENAI_API_BASE_URL = form_data.openai_config.url | ||||||
|                 app.state.OPENAI_API_KEY = form_data.openai_config.key |                 app.state.OPENAI_API_KEY = form_data.openai_config.key | ||||||
|         else: | 
 | ||||||
|             sentence_transformer_ef = sentence_transformers.SentenceTransformer( |         update_embedding_model(app.state.RAG_EMBEDDING_MODEL, True) | ||||||
|                 app.state.RAG_EMBEDDING_MODEL, |  | ||||||
|                 device=DEVICE_TYPE, |  | ||||||
|                 trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE, |  | ||||||
|             ) |  | ||||||
|             app.state.RAG_EMBEDDING_MODEL = form_data.embedding_model |  | ||||||
|             app.state.sentence_transformer_ef = sentence_transformer_ef |  | ||||||
| 
 | 
 | ||||||
|         return { |         return { | ||||||
|             "status": True, |             "status": True, | ||||||
|  | @ -196,7 +232,6 @@ async def update_embedding_config( | ||||||
|                 "key": app.state.OPENAI_API_KEY, |                 "key": app.state.OPENAI_API_KEY, | ||||||
|             }, |             }, | ||||||
|         } |         } | ||||||
| 
 |  | ||||||
|     except Exception as e: |     except Exception as e: | ||||||
|         log.exception(f"Problem updating embedding model: {e}") |         log.exception(f"Problem updating embedding model: {e}") | ||||||
|         raise HTTPException( |         raise HTTPException( | ||||||
|  | @ -205,6 +240,34 @@ async def update_embedding_config( | ||||||
|         ) |         ) | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
|  | class RerankingModelUpdateForm(BaseModel): | ||||||
|  |     reranking_model: str | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | @app.post("/reranking/update") | ||||||
|  | async def update_reranking_config( | ||||||
|  |     form_data: RerankingModelUpdateForm, user=Depends(get_admin_user) | ||||||
|  | ): | ||||||
|  |     log.info( | ||||||
|  |         f"Updating reranking model: {app.state.RAG_RERANKING_MODEL} to {form_data.reranking_model}" | ||||||
|  |     ) | ||||||
|  |     try: | ||||||
|  |         app.state.RAG_RERANKING_MODEL = form_data.reranking_model | ||||||
|  | 
 | ||||||
|  |         update_reranking_model(app.state.RAG_RERANKING_MODEL, True) | ||||||
|  | 
 | ||||||
|  |         return { | ||||||
|  |             "status": True, | ||||||
|  |             "reranking_model": app.state.RAG_RERANKING_MODEL, | ||||||
|  |         } | ||||||
|  |     except Exception as e: | ||||||
|  |         log.exception(f"Problem updating reranking model: {e}") | ||||||
|  |         raise HTTPException( | ||||||
|  |             status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, | ||||||
|  |             detail=ERROR_MESSAGES.DEFAULT(e), | ||||||
|  |         ) | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
| @app.get("/config") | @app.get("/config") | ||||||
| async def get_rag_config(user=Depends(get_admin_user)): | async def get_rag_config(user=Depends(get_admin_user)): | ||||||
|     return { |     return { | ||||||
|  | @ -257,11 +320,13 @@ async def get_query_settings(user=Depends(get_admin_user)): | ||||||
|         "status": True, |         "status": True, | ||||||
|         "template": app.state.RAG_TEMPLATE, |         "template": app.state.RAG_TEMPLATE, | ||||||
|         "k": app.state.TOP_K, |         "k": app.state.TOP_K, | ||||||
|  |         "r": app.state.RELEVANCE_THRESHOLD, | ||||||
|     } |     } | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| class QuerySettingsForm(BaseModel): | class QuerySettingsForm(BaseModel): | ||||||
|     k: Optional[int] = None |     k: Optional[int] = None | ||||||
|  |     r: Optional[float] = None | ||||||
|     template: Optional[str] = None |     template: Optional[str] = None | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
|  | @ -271,6 +336,7 @@ async def update_query_settings( | ||||||
| ): | ): | ||||||
|     app.state.RAG_TEMPLATE = form_data.template if form_data.template else RAG_TEMPLATE |     app.state.RAG_TEMPLATE = form_data.template if form_data.template else RAG_TEMPLATE | ||||||
|     app.state.TOP_K = form_data.k if form_data.k else 4 |     app.state.TOP_K = form_data.k if form_data.k else 4 | ||||||
|  |     app.state.RELEVANCE_THRESHOLD = form_data.r if form_data.r else 0.0 | ||||||
|     return {"status": True, "template": app.state.RAG_TEMPLATE} |     return {"status": True, "template": app.state.RAG_TEMPLATE} | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
|  | @ -278,6 +344,7 @@ class QueryDocForm(BaseModel): | ||||||
|     collection_name: str |     collection_name: str | ||||||
|     query: str |     query: str | ||||||
|     k: Optional[int] = None |     k: Optional[int] = None | ||||||
|  |     r: Optional[float] = None | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| @app.post("/query/doc") | @app.post("/query/doc") | ||||||
|  | @ -286,34 +353,22 @@ def query_doc_handler( | ||||||
|     user=Depends(get_current_user), |     user=Depends(get_current_user), | ||||||
| ): | ): | ||||||
|     try: |     try: | ||||||
|         if app.state.RAG_EMBEDDING_ENGINE == "": |         embeddings_function = query_embeddings_function( | ||||||
|             query_embeddings = app.state.sentence_transformer_ef.encode( |             app.state.RAG_EMBEDDING_ENGINE, | ||||||
|                 form_data.query |             app.state.RAG_EMBEDDING_MODEL, | ||||||
|             ).tolist() |             app.state.sentence_transformer_ef, | ||||||
|         elif app.state.RAG_EMBEDDING_ENGINE == "ollama": |             app.state.OPENAI_API_KEY, | ||||||
|             query_embeddings = generate_ollama_embeddings( |             app.state.OPENAI_API_BASE_URL, | ||||||
|                 GenerateEmbeddingsForm( |         ) | ||||||
|                     **{ |  | ||||||
|                         "model": app.state.RAG_EMBEDDING_MODEL, |  | ||||||
|                         "prompt": form_data.query, |  | ||||||
|                     } |  | ||||||
|                 ) |  | ||||||
|             ) |  | ||||||
|         elif app.state.RAG_EMBEDDING_ENGINE == "openai": |  | ||||||
|             query_embeddings = generate_openai_embeddings( |  | ||||||
|                 model=app.state.RAG_EMBEDDING_MODEL, |  | ||||||
|                 text=form_data.query, |  | ||||||
|                 key=app.state.OPENAI_API_KEY, |  | ||||||
|                 url=app.state.OPENAI_API_BASE_URL, |  | ||||||
|             ) |  | ||||||
| 
 | 
 | ||||||
|         return query_embeddings_doc( |         return query_embeddings_doc( | ||||||
|             collection_name=form_data.collection_name, |             collection_name=form_data.collection_name, | ||||||
|             query=form_data.query, |             query=form_data.query, | ||||||
|             query_embeddings=query_embeddings, |  | ||||||
|             k=form_data.k if form_data.k else app.state.TOP_K, |             k=form_data.k if form_data.k else app.state.TOP_K, | ||||||
|  |             r=form_data.r if form_data.r else app.state.RELEVANCE_THRESHOLD, | ||||||
|  |             embeddings_function=embeddings_function, | ||||||
|  |             reranking_function=app.state.sentence_transformer_rf, | ||||||
|         ) |         ) | ||||||
| 
 |  | ||||||
|     except Exception as e: |     except Exception as e: | ||||||
|         log.exception(e) |         log.exception(e) | ||||||
|         raise HTTPException( |         raise HTTPException( | ||||||
|  | @ -326,6 +381,7 @@ class QueryCollectionsForm(BaseModel): | ||||||
|     collection_names: List[str] |     collection_names: List[str] | ||||||
|     query: str |     query: str | ||||||
|     k: Optional[int] = None |     k: Optional[int] = None | ||||||
|  |     r: Optional[float] = None | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| @app.post("/query/collection") | @app.post("/query/collection") | ||||||
|  | @ -334,33 +390,22 @@ def query_collection_handler( | ||||||
|     user=Depends(get_current_user), |     user=Depends(get_current_user), | ||||||
| ): | ): | ||||||
|     try: |     try: | ||||||
|         if app.state.RAG_EMBEDDING_ENGINE == "": |         embeddings_function = query_embeddings_function( | ||||||
|             query_embeddings = app.state.sentence_transformer_ef.encode( |             app.state.RAG_EMBEDDING_ENGINE, | ||||||
|                 form_data.query |             app.state.RAG_EMBEDDING_MODEL, | ||||||
|             ).tolist() |             app.state.sentence_transformer_ef, | ||||||
|         elif app.state.RAG_EMBEDDING_ENGINE == "ollama": |             app.state.OPENAI_API_KEY, | ||||||
|             query_embeddings = generate_ollama_embeddings( |             app.state.OPENAI_API_BASE_URL, | ||||||
|                 GenerateEmbeddingsForm( |         ) | ||||||
|                     **{ |  | ||||||
|                         "model": app.state.RAG_EMBEDDING_MODEL, |  | ||||||
|                         "prompt": form_data.query, |  | ||||||
|                     } |  | ||||||
|                 ) |  | ||||||
|             ) |  | ||||||
|         elif app.state.RAG_EMBEDDING_ENGINE == "openai": |  | ||||||
|             query_embeddings = generate_openai_embeddings( |  | ||||||
|                 model=app.state.RAG_EMBEDDING_MODEL, |  | ||||||
|                 text=form_data.query, |  | ||||||
|                 key=app.state.OPENAI_API_KEY, |  | ||||||
|                 url=app.state.OPENAI_API_BASE_URL, |  | ||||||
|             ) |  | ||||||
| 
 | 
 | ||||||
|         return query_embeddings_collection( |         return query_embeddings_collection( | ||||||
|             collection_names=form_data.collection_names, |             collection_names=form_data.collection_names, | ||||||
|             query_embeddings=query_embeddings, |             query=form_data.query, | ||||||
|             k=form_data.k if form_data.k else app.state.TOP_K, |             k=form_data.k if form_data.k else app.state.TOP_K, | ||||||
|  |             r=form_data.r if form_data.r else app.state.RELEVANCE_THRESHOLD, | ||||||
|  |             embeddings_function=embeddings_function, | ||||||
|  |             reranking_function=app.state.sentence_transformer_rf, | ||||||
|         ) |         ) | ||||||
| 
 |  | ||||||
|     except Exception as e: |     except Exception as e: | ||||||
|         log.exception(e) |         log.exception(e) | ||||||
|         raise HTTPException( |         raise HTTPException( | ||||||
|  | @ -427,8 +472,6 @@ def store_docs_in_vector_db(docs, collection_name, overwrite: bool = False) -> b | ||||||
|     log.info(f"store_docs_in_vector_db {docs} {collection_name}") |     log.info(f"store_docs_in_vector_db {docs} {collection_name}") | ||||||
| 
 | 
 | ||||||
|     texts = [doc.page_content for doc in docs] |     texts = [doc.page_content for doc in docs] | ||||||
|     texts = list(map(lambda x: x.replace("\n", " "), texts)) |  | ||||||
| 
 |  | ||||||
|     metadatas = [doc.metadata for doc in docs] |     metadatas = [doc.metadata for doc in docs] | ||||||
| 
 | 
 | ||||||
|     try: |     try: | ||||||
|  | @ -440,27 +483,16 @@ def store_docs_in_vector_db(docs, collection_name, overwrite: bool = False) -> b | ||||||
| 
 | 
 | ||||||
|         collection = CHROMA_CLIENT.create_collection(name=collection_name) |         collection = CHROMA_CLIENT.create_collection(name=collection_name) | ||||||
| 
 | 
 | ||||||
|         if app.state.RAG_EMBEDDING_ENGINE == "": |         embedding_func = query_embeddings_function( | ||||||
|             embeddings = app.state.sentence_transformer_ef.encode(texts).tolist() |             app.state.RAG_EMBEDDING_ENGINE, | ||||||
|         elif app.state.RAG_EMBEDDING_ENGINE == "ollama": |             app.state.RAG_EMBEDDING_MODEL, | ||||||
|             embeddings = [ |             app.state.sentence_transformer_ef, | ||||||
|                 generate_ollama_embeddings( |             app.state.OPENAI_API_KEY, | ||||||
|                     GenerateEmbeddingsForm( |             app.state.OPENAI_API_BASE_URL, | ||||||
|                         **{"model": app.state.RAG_EMBEDDING_MODEL, "prompt": text} |         ) | ||||||
|                     ) | 
 | ||||||
|                 ) |         embedding_texts = list(map(lambda x: x.replace("\n", " "), texts)) | ||||||
|                 for text in texts |         embeddings = embedding_func(embedding_texts) | ||||||
|             ] |  | ||||||
|         elif app.state.RAG_EMBEDDING_ENGINE == "openai": |  | ||||||
|             embeddings = [ |  | ||||||
|                 generate_openai_embeddings( |  | ||||||
|                     model=app.state.RAG_EMBEDDING_MODEL, |  | ||||||
|                     text=text, |  | ||||||
|                     key=app.state.OPENAI_API_KEY, |  | ||||||
|                     url=app.state.OPENAI_API_BASE_URL, |  | ||||||
|                 ) |  | ||||||
|                 for text in texts |  | ||||||
|             ] |  | ||||||
| 
 | 
 | ||||||
|         for batch in create_batches( |         for batch in create_batches( | ||||||
|             api=CHROMA_CLIENT, |             api=CHROMA_CLIENT, | ||||||
|  |  | ||||||
|  | @ -1,3 +1,4 @@ | ||||||
|  | import os | ||||||
| import logging | import logging | ||||||
| import requests | import requests | ||||||
| 
 | 
 | ||||||
|  | @ -8,6 +9,15 @@ from apps.ollama.main import ( | ||||||
|     GenerateEmbeddingsForm, |     GenerateEmbeddingsForm, | ||||||
| ) | ) | ||||||
| 
 | 
 | ||||||
|  | from huggingface_hub import snapshot_download | ||||||
|  | 
 | ||||||
|  | from langchain_core.documents import Document | ||||||
|  | from langchain_community.retrievers import BM25Retriever | ||||||
|  | from langchain.retrievers import ( | ||||||
|  |     ContextualCompressionRetriever, | ||||||
|  |     EnsembleRetriever, | ||||||
|  | ) | ||||||
|  | 
 | ||||||
| from config import SRC_LOG_LEVELS, CHROMA_CLIENT | from config import SRC_LOG_LEVELS, CHROMA_CLIENT | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
|  | @ -15,18 +25,53 @@ log = logging.getLogger(__name__) | ||||||
| log.setLevel(SRC_LOG_LEVELS["RAG"]) | log.setLevel(SRC_LOG_LEVELS["RAG"]) | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| def query_embeddings_doc(collection_name: str, query: str, query_embeddings, k: int): | def query_embeddings_doc( | ||||||
|  |     collection_name: str, | ||||||
|  |     query: str, | ||||||
|  |     k: int, | ||||||
|  |     r: float, | ||||||
|  |     embeddings_function, | ||||||
|  |     reranking_function, | ||||||
|  | ): | ||||||
|     try: |     try: | ||||||
|         # if you use docker use the model from the environment variable |         # if you use docker use the model from the environment variable | ||||||
|         log.info(f"query_embeddings_doc {query_embeddings}") |  | ||||||
|         collection = CHROMA_CLIENT.get_collection(name=collection_name) |         collection = CHROMA_CLIENT.get_collection(name=collection_name) | ||||||
| 
 | 
 | ||||||
|         result = collection.query( |         documents = collection.get()  # get all documents | ||||||
|             query_embeddings=[query_embeddings], |         bm25_retriever = BM25Retriever.from_texts( | ||||||
|             n_results=k, |             texts=documents.get("documents"), | ||||||
|  |             metadatas=documents.get("metadatas"), | ||||||
|  |         ) | ||||||
|  |         bm25_retriever.k = k | ||||||
|  | 
 | ||||||
|  |         chroma_retriever = ChromaRetriever( | ||||||
|  |             collection=collection, | ||||||
|  |             embeddings_function=embeddings_function, | ||||||
|  |             top_n=k, | ||||||
|         ) |         ) | ||||||
| 
 | 
 | ||||||
|         log.info(f"query_embeddings_doc:result {result}") |         ensemble_retriever = EnsembleRetriever( | ||||||
|  |             retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5] | ||||||
|  |         ) | ||||||
|  | 
 | ||||||
|  |         compressor = RerankCompressor( | ||||||
|  |             embeddings_function=embeddings_function, | ||||||
|  |             reranking_function=reranking_function, | ||||||
|  |             r_score=r, | ||||||
|  |             top_n=k, | ||||||
|  |         ) | ||||||
|  | 
 | ||||||
|  |         compression_retriever = ContextualCompressionRetriever( | ||||||
|  |             base_compressor=compressor, base_retriever=ensemble_retriever | ||||||
|  |         ) | ||||||
|  | 
 | ||||||
|  |         result = compression_retriever.invoke(query) | ||||||
|  |         result = { | ||||||
|  |             "distances": [[d.metadata.get("score") for d in result]], | ||||||
|  |             "documents": [[d.page_content for d in result]], | ||||||
|  |             "metadatas": [[d.metadata for d in result]], | ||||||
|  |         } | ||||||
|  | 
 | ||||||
|         return result |         return result | ||||||
|     except Exception as e: |     except Exception as e: | ||||||
|         raise e |         raise e | ||||||
|  | @ -34,63 +79,65 @@ def query_embeddings_doc(collection_name: str, query: str, query_embeddings, k: | ||||||
| 
 | 
 | ||||||
| def merge_and_sort_query_results(query_results, k): | def merge_and_sort_query_results(query_results, k): | ||||||
|     # Initialize lists to store combined data |     # Initialize lists to store combined data | ||||||
|     combined_ids = [] |  | ||||||
|     combined_distances = [] |     combined_distances = [] | ||||||
|     combined_metadatas = [] |  | ||||||
|     combined_documents = [] |     combined_documents = [] | ||||||
|  |     combined_metadatas = [] | ||||||
| 
 | 
 | ||||||
|     # Combine data from each dictionary |  | ||||||
|     for data in query_results: |     for data in query_results: | ||||||
|         combined_ids.extend(data["ids"][0]) |  | ||||||
|         combined_distances.extend(data["distances"][0]) |         combined_distances.extend(data["distances"][0]) | ||||||
|         combined_metadatas.extend(data["metadatas"][0]) |  | ||||||
|         combined_documents.extend(data["documents"][0]) |         combined_documents.extend(data["documents"][0]) | ||||||
|  |         combined_metadatas.extend(data["metadatas"][0]) | ||||||
| 
 | 
 | ||||||
|     # Create a list of tuples (distance, id, metadata, document) |     # Create a list of tuples (distance, document, metadata) | ||||||
|     combined = list( |     combined = list(zip(combined_distances, combined_documents, combined_metadatas)) | ||||||
|         zip(combined_distances, combined_ids, combined_metadatas, combined_documents) |  | ||||||
|     ) |  | ||||||
| 
 | 
 | ||||||
|     # Sort the list based on distances |     # Sort the list based on distances | ||||||
|     combined.sort(key=lambda x: x[0]) |     combined.sort(key=lambda x: x[0]) | ||||||
| 
 | 
 | ||||||
|     # Unzip the sorted list |     # We don't have anything :-( | ||||||
|     sorted_distances, sorted_ids, sorted_metadatas, sorted_documents = zip(*combined) |     if not combined: | ||||||
|  |         sorted_distances = [] | ||||||
|  |         sorted_documents = [] | ||||||
|  |         sorted_metadatas = [] | ||||||
|  |     else: | ||||||
|  |         # Unzip the sorted list | ||||||
|  |         sorted_distances, sorted_documents, sorted_metadatas = zip(*combined) | ||||||
| 
 | 
 | ||||||
|     # Slicing the lists to include only k elements |         # Slicing the lists to include only k elements | ||||||
|     sorted_distances = list(sorted_distances)[:k] |         sorted_distances = list(sorted_distances)[:k] | ||||||
|     sorted_ids = list(sorted_ids)[:k] |         sorted_documents = list(sorted_documents)[:k] | ||||||
|     sorted_metadatas = list(sorted_metadatas)[:k] |         sorted_metadatas = list(sorted_metadatas)[:k] | ||||||
|     sorted_documents = list(sorted_documents)[:k] |  | ||||||
| 
 | 
 | ||||||
|     # Create the output dictionary |     # Create the output dictionary | ||||||
|     merged_query_results = { |     result = { | ||||||
|         "ids": [sorted_ids], |  | ||||||
|         "distances": [sorted_distances], |         "distances": [sorted_distances], | ||||||
|         "metadatas": [sorted_metadatas], |  | ||||||
|         "documents": [sorted_documents], |         "documents": [sorted_documents], | ||||||
|         "embeddings": None, |         "metadatas": [sorted_metadatas], | ||||||
|         "uris": None, |  | ||||||
|         "data": None, |  | ||||||
|     } |     } | ||||||
| 
 | 
 | ||||||
|     return merged_query_results |     return result | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| def query_embeddings_collection( | def query_embeddings_collection( | ||||||
|     collection_names: List[str], query: str, query_embeddings, k: int |     collection_names: List[str], | ||||||
|  |     query: str, | ||||||
|  |     k: int, | ||||||
|  |     r: float, | ||||||
|  |     embeddings_function, | ||||||
|  |     reranking_function, | ||||||
| ): | ): | ||||||
| 
 | 
 | ||||||
|     results = [] |     results = [] | ||||||
|     log.info(f"query_embeddings_collection {query_embeddings}") |  | ||||||
| 
 | 
 | ||||||
|     for collection_name in collection_names: |     for collection_name in collection_names: | ||||||
|         try: |         try: | ||||||
|             result = query_embeddings_doc( |             result = query_embeddings_doc( | ||||||
|                 collection_name=collection_name, |                 collection_name=collection_name, | ||||||
|                 query=query, |                 query=query, | ||||||
|                 query_embeddings=query_embeddings, |  | ||||||
|                 k=k, |                 k=k, | ||||||
|  |                 r=r, | ||||||
|  |                 embeddings_function=embeddings_function, | ||||||
|  |                 reranking_function=reranking_function, | ||||||
|             ) |             ) | ||||||
|             results.append(result) |             results.append(result) | ||||||
|         except: |         except: | ||||||
|  | @ -105,19 +152,57 @@ def rag_template(template: str, context: str, query: str): | ||||||
|     return template |     return template | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| def rag_messages( | def query_embeddings_function( | ||||||
|     docs, |  | ||||||
|     messages, |  | ||||||
|     template, |  | ||||||
|     k, |  | ||||||
|     embedding_engine, |     embedding_engine, | ||||||
|     embedding_model, |     embedding_model, | ||||||
|     embedding_function, |     embedding_function, | ||||||
|     openai_key, |     openai_key, | ||||||
|     openai_url, |     openai_url, | ||||||
|  | ): | ||||||
|  |     if embedding_engine == "": | ||||||
|  |         return lambda query: embedding_function.encode(query).tolist() | ||||||
|  |     elif embedding_engine in ["ollama", "openai"]: | ||||||
|  |         if embedding_engine == "ollama": | ||||||
|  |             func = lambda query: generate_ollama_embeddings( | ||||||
|  |                 GenerateEmbeddingsForm( | ||||||
|  |                     **{ | ||||||
|  |                         "model": embedding_model, | ||||||
|  |                         "prompt": query, | ||||||
|  |                     } | ||||||
|  |                 ) | ||||||
|  |             ) | ||||||
|  |         elif embedding_engine == "openai": | ||||||
|  |             func = lambda query: generate_openai_embeddings( | ||||||
|  |                 model=embedding_model, | ||||||
|  |                 text=query, | ||||||
|  |                 key=openai_key, | ||||||
|  |                 url=openai_url, | ||||||
|  |             ) | ||||||
|  | 
 | ||||||
|  |         def generate_multiple(query, f): | ||||||
|  |             if isinstance(query, list): | ||||||
|  |                 return [f(q) for q in query] | ||||||
|  |             else: | ||||||
|  |                 return f(query) | ||||||
|  | 
 | ||||||
|  |         return lambda query: generate_multiple(query, func) | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def rag_messages( | ||||||
|  |     docs, | ||||||
|  |     messages, | ||||||
|  |     template, | ||||||
|  |     k, | ||||||
|  |     r, | ||||||
|  |     embedding_engine, | ||||||
|  |     embedding_model, | ||||||
|  |     embedding_function, | ||||||
|  |     reranking_function, | ||||||
|  |     openai_key, | ||||||
|  |     openai_url, | ||||||
| ): | ): | ||||||
|     log.debug( |     log.debug( | ||||||
|         f"docs: {docs} {messages} {embedding_engine} {embedding_model} {embedding_function} {openai_key} {openai_url}" |         f"docs: {docs} {messages} {embedding_engine} {embedding_model} {embedding_function} {reranking_function} {openai_key} {openai_url}" | ||||||
|     ) |     ) | ||||||
| 
 | 
 | ||||||
|     last_user_message_idx = None |     last_user_message_idx = None | ||||||
|  | @ -145,62 +230,66 @@ def rag_messages( | ||||||
|         content_type = None |         content_type = None | ||||||
|         query = "" |         query = "" | ||||||
| 
 | 
 | ||||||
|  |     embeddings_function = query_embeddings_function( | ||||||
|  |         embedding_engine, | ||||||
|  |         embedding_model, | ||||||
|  |         embedding_function, | ||||||
|  |         openai_key, | ||||||
|  |         openai_url, | ||||||
|  |     ) | ||||||
|  | 
 | ||||||
|  |     extracted_collections = [] | ||||||
|     relevant_contexts = [] |     relevant_contexts = [] | ||||||
| 
 | 
 | ||||||
|     for doc in docs: |     for doc in docs: | ||||||
|         context = None |         context = None | ||||||
| 
 | 
 | ||||||
|         try: |         collection = doc.get("collection_name") | ||||||
|  |         if collection: | ||||||
|  |             collection = [collection] | ||||||
|  |         else: | ||||||
|  |             collection = doc.get("collection_names", []) | ||||||
| 
 | 
 | ||||||
|  |         collection = set(collection).difference(extracted_collections) | ||||||
|  |         if not collection: | ||||||
|  |             log.debug(f"skipping {doc} as it has already been extracted") | ||||||
|  |             continue | ||||||
|  | 
 | ||||||
|  |         try: | ||||||
|             if doc["type"] == "text": |             if doc["type"] == "text": | ||||||
|                 context = doc["content"] |                 context = doc["content"] | ||||||
|  |             elif doc["type"] == "collection": | ||||||
|  |                 context = query_embeddings_collection( | ||||||
|  |                     collection_names=doc["collection_names"], | ||||||
|  |                     query=query, | ||||||
|  |                     k=k, | ||||||
|  |                     r=r, | ||||||
|  |                     embeddings_function=embeddings_function, | ||||||
|  |                     reranking_function=reranking_function, | ||||||
|  |                 ) | ||||||
|             else: |             else: | ||||||
|                 if embedding_engine == "": |                 context = query_embeddings_doc( | ||||||
|                     query_embeddings = embedding_function.encode(query).tolist() |                     collection_name=doc["collection_name"], | ||||||
|                 elif embedding_engine == "ollama": |                     query=query, | ||||||
|                     query_embeddings = generate_ollama_embeddings( |                     k=k, | ||||||
|                         GenerateEmbeddingsForm( |                     r=r, | ||||||
|                             **{ |                     embeddings_function=embeddings_function, | ||||||
|                                 "model": embedding_model, |                     reranking_function=reranking_function, | ||||||
|                                 "prompt": query, |                 ) | ||||||
|                             } |  | ||||||
|                         ) |  | ||||||
|                     ) |  | ||||||
|                 elif embedding_engine == "openai": |  | ||||||
|                     query_embeddings = generate_openai_embeddings( |  | ||||||
|                         model=embedding_model, |  | ||||||
|                         text=query, |  | ||||||
|                         key=openai_key, |  | ||||||
|                         url=openai_url, |  | ||||||
|                     ) |  | ||||||
| 
 |  | ||||||
|                 if doc["type"] == "collection": |  | ||||||
|                     context = query_embeddings_collection( |  | ||||||
|                         collection_names=doc["collection_names"], |  | ||||||
|                         query=query, |  | ||||||
|                         query_embeddings=query_embeddings, |  | ||||||
|                         k=k, |  | ||||||
|                     ) |  | ||||||
|                 else: |  | ||||||
|                     context = query_embeddings_doc( |  | ||||||
|                         collection_name=doc["collection_name"], |  | ||||||
|                         query=query, |  | ||||||
|                         query_embeddings=query_embeddings, |  | ||||||
|                         k=k, |  | ||||||
|                     ) |  | ||||||
| 
 |  | ||||||
|         except Exception as e: |         except Exception as e: | ||||||
|             log.exception(e) |             log.exception(e) | ||||||
|             context = None |             context = None | ||||||
| 
 | 
 | ||||||
|         relevant_contexts.append(context) |         if context: | ||||||
|  |             relevant_contexts.append(context) | ||||||
| 
 | 
 | ||||||
|     log.debug(f"relevant_contexts: {relevant_contexts}") |         extracted_collections.extend(collection) | ||||||
| 
 | 
 | ||||||
|     context_string = "" |     context_string = "" | ||||||
|     for context in relevant_contexts: |     for context in relevant_contexts: | ||||||
|         if context: |         items = context["documents"][0] | ||||||
|             context_string += " ".join(context["documents"][0]) + "\n" |         context_string += "\n\n".join(items) | ||||||
|  |     context_string = context_string.strip() | ||||||
| 
 | 
 | ||||||
|     ra_content = rag_template( |     ra_content = rag_template( | ||||||
|         template=template, |         template=template, | ||||||
|  | @ -208,6 +297,8 @@ def rag_messages( | ||||||
|         query=query, |         query=query, | ||||||
|     ) |     ) | ||||||
| 
 | 
 | ||||||
|  |     log.debug(f"ra_content: {ra_content}") | ||||||
|  | 
 | ||||||
|     if content_type == "list": |     if content_type == "list": | ||||||
|         new_content = [] |         new_content = [] | ||||||
|         for content_item in user_message["content"]: |         for content_item in user_message["content"]: | ||||||
|  | @ -229,6 +320,44 @@ def rag_messages( | ||||||
|     return messages |     return messages | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
|  | def get_model_path(model: str, update_model: bool = False): | ||||||
|  |     # Construct huggingface_hub kwargs with local_files_only to return the snapshot path | ||||||
|  |     cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME") | ||||||
|  | 
 | ||||||
|  |     local_files_only = not update_model | ||||||
|  | 
 | ||||||
|  |     snapshot_kwargs = { | ||||||
|  |         "cache_dir": cache_dir, | ||||||
|  |         "local_files_only": local_files_only, | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     log.debug(f"model: {model}") | ||||||
|  |     log.debug(f"snapshot_kwargs: {snapshot_kwargs}") | ||||||
|  | 
 | ||||||
|  |     # Inspiration from upstream sentence_transformers | ||||||
|  |     if ( | ||||||
|  |         os.path.exists(model) | ||||||
|  |         or ("\\" in model or model.count("/") > 1) | ||||||
|  |         and local_files_only | ||||||
|  |     ): | ||||||
|  |         # If fully qualified path exists, return input, else set repo_id | ||||||
|  |         return model | ||||||
|  |     elif "/" not in model: | ||||||
|  |         # Set valid repo_id for model short-name | ||||||
|  |         model = "sentence-transformers" + "/" + model | ||||||
|  | 
 | ||||||
|  |     snapshot_kwargs["repo_id"] = model | ||||||
|  | 
 | ||||||
|  |     # Attempt to query the huggingface_hub library to determine the local path and/or to update | ||||||
|  |     try: | ||||||
|  |         model_repo_path = snapshot_download(**snapshot_kwargs) | ||||||
|  |         log.debug(f"model_repo_path: {model_repo_path}") | ||||||
|  |         return model_repo_path | ||||||
|  |     except Exception as e: | ||||||
|  |         log.exception(f"Cannot determine model snapshot path: {e}") | ||||||
|  |         return model | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
| def generate_openai_embeddings( | def generate_openai_embeddings( | ||||||
|     model: str, text: str, key: str, url: str = "https://api.openai.com/v1" |     model: str, text: str, key: str, url: str = "https://api.openai.com/v1" | ||||||
| ): | ): | ||||||
|  | @ -250,3 +379,97 @@ def generate_openai_embeddings( | ||||||
|     except Exception as e: |     except Exception as e: | ||||||
|         print(e) |         print(e) | ||||||
|         return None |         return None | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | from typing import Any | ||||||
|  | 
 | ||||||
|  | from langchain_core.retrievers import BaseRetriever | ||||||
|  | from langchain_core.callbacks import CallbackManagerForRetrieverRun | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | class ChromaRetriever(BaseRetriever): | ||||||
|  |     collection: Any | ||||||
|  |     embeddings_function: Any | ||||||
|  |     top_n: int | ||||||
|  | 
 | ||||||
|  |     def _get_relevant_documents( | ||||||
|  |         self, | ||||||
|  |         query: str, | ||||||
|  |         *, | ||||||
|  |         run_manager: CallbackManagerForRetrieverRun, | ||||||
|  |     ) -> List[Document]: | ||||||
|  |         query_embeddings = self.embeddings_function(query) | ||||||
|  | 
 | ||||||
|  |         results = self.collection.query( | ||||||
|  |             query_embeddings=[query_embeddings], | ||||||
|  |             n_results=self.top_n, | ||||||
|  |         ) | ||||||
|  | 
 | ||||||
|  |         ids = results["ids"][0] | ||||||
|  |         metadatas = results["metadatas"][0] | ||||||
|  |         documents = results["documents"][0] | ||||||
|  | 
 | ||||||
|  |         return [ | ||||||
|  |             Document( | ||||||
|  |                 metadata=metadatas[idx], | ||||||
|  |                 page_content=documents[idx], | ||||||
|  |             ) | ||||||
|  |             for idx in range(len(ids)) | ||||||
|  |         ] | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | import operator | ||||||
|  | 
 | ||||||
|  | from typing import Optional, Sequence | ||||||
|  | 
 | ||||||
|  | from langchain_core.documents import BaseDocumentCompressor, Document | ||||||
|  | from langchain_core.callbacks import Callbacks | ||||||
|  | from langchain_core.pydantic_v1 import Extra | ||||||
|  | 
 | ||||||
|  | from sentence_transformers import util | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | class RerankCompressor(BaseDocumentCompressor): | ||||||
|  |     embeddings_function: Any | ||||||
|  |     reranking_function: Any | ||||||
|  |     r_score: float | ||||||
|  |     top_n: int | ||||||
|  | 
 | ||||||
|  |     class Config: | ||||||
|  |         extra = Extra.forbid | ||||||
|  |         arbitrary_types_allowed = True | ||||||
|  | 
 | ||||||
|  |     def compress_documents( | ||||||
|  |         self, | ||||||
|  |         documents: Sequence[Document], | ||||||
|  |         query: str, | ||||||
|  |         callbacks: Optional[Callbacks] = None, | ||||||
|  |     ) -> Sequence[Document]: | ||||||
|  |         if self.reranking_function: | ||||||
|  |             scores = self.reranking_function.predict( | ||||||
|  |                 [(query, doc.page_content) for doc in documents] | ||||||
|  |             ) | ||||||
|  |         else: | ||||||
|  |             query_embedding = self.embeddings_function(query) | ||||||
|  |             document_embedding = self.embeddings_function( | ||||||
|  |                 [doc.page_content for doc in documents] | ||||||
|  |             ) | ||||||
|  |             scores = util.cos_sim(query_embedding, document_embedding)[0] | ||||||
|  | 
 | ||||||
|  |         docs_with_scores = list(zip(documents, scores.tolist())) | ||||||
|  |         if self.r_score: | ||||||
|  |             docs_with_scores = [ | ||||||
|  |                 (d, s) for d, s in docs_with_scores if s >= self.r_score | ||||||
|  |             ] | ||||||
|  | 
 | ||||||
|  |         result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True) | ||||||
|  |         final_results = [] | ||||||
|  |         for doc, doc_score in result[: self.top_n]: | ||||||
|  |             metadata = doc.metadata | ||||||
|  |             metadata["score"] = doc_score | ||||||
|  |             doc = Document( | ||||||
|  |                 page_content=doc.page_content, | ||||||
|  |                 metadata=metadata, | ||||||
|  |             ) | ||||||
|  |             final_results.append(doc) | ||||||
|  |         return final_results | ||||||
|  |  | ||||||
|  | @ -420,6 +420,9 @@ if WEBUI_AUTH and WEBUI_SECRET_KEY == "": | ||||||
| CHROMA_DATA_PATH = f"{DATA_DIR}/vector_db" | CHROMA_DATA_PATH = f"{DATA_DIR}/vector_db" | ||||||
| # this uses the model defined in the Dockerfile ENV variable. If you dont use docker or docker based deployments such as k8s, the default embedding model will be used (sentence-transformers/all-MiniLM-L6-v2) | # this uses the model defined in the Dockerfile ENV variable. If you dont use docker or docker based deployments such as k8s, the default embedding model will be used (sentence-transformers/all-MiniLM-L6-v2) | ||||||
| 
 | 
 | ||||||
|  | RAG_TOP_K = int(os.environ.get("RAG_TOP_K", "5")) | ||||||
|  | RAG_RELEVANCE_THRESHOLD = float(os.environ.get("RAG_RELEVANCE_THRESHOLD", "0.0")) | ||||||
|  | 
 | ||||||
| RAG_EMBEDDING_ENGINE = os.environ.get("RAG_EMBEDDING_ENGINE", "") | RAG_EMBEDDING_ENGINE = os.environ.get("RAG_EMBEDDING_ENGINE", "") | ||||||
| 
 | 
 | ||||||
| RAG_EMBEDDING_MODEL = os.environ.get( | RAG_EMBEDDING_MODEL = os.environ.get( | ||||||
|  | @ -427,10 +430,26 @@ RAG_EMBEDDING_MODEL = os.environ.get( | ||||||
| ) | ) | ||||||
| log.info(f"Embedding model set: {RAG_EMBEDDING_MODEL}"), | log.info(f"Embedding model set: {RAG_EMBEDDING_MODEL}"), | ||||||
| 
 | 
 | ||||||
|  | RAG_EMBEDDING_MODEL_AUTO_UPDATE = ( | ||||||
|  |     os.environ.get("RAG_EMBEDDING_MODEL_AUTO_UPDATE", "").lower() == "true" | ||||||
|  | ) | ||||||
|  | 
 | ||||||
| RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE = ( | RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE = ( | ||||||
|     os.environ.get("RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE", "").lower() == "true" |     os.environ.get("RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE", "").lower() == "true" | ||||||
| ) | ) | ||||||
| 
 | 
 | ||||||
|  | RAG_RERANKING_MODEL = os.environ.get("RAG_RERANKING_MODEL", "") | ||||||
|  | if not RAG_RERANKING_MODEL == "": | ||||||
|  |     log.info(f"Reranking model set: {RAG_RERANKING_MODEL}"), | ||||||
|  | 
 | ||||||
|  | RAG_RERANKING_MODEL_AUTO_UPDATE = ( | ||||||
|  |     os.environ.get("RAG_RERANKING_MODEL_AUTO_UPDATE", "").lower() == "true" | ||||||
|  | ) | ||||||
|  | 
 | ||||||
|  | RAG_RERANKING_MODEL_TRUST_REMOTE_CODE = ( | ||||||
|  |     os.environ.get("RAG_RERANKING_MODEL_TRUST_REMOTE_CODE", "").lower() == "true" | ||||||
|  | ) | ||||||
|  | 
 | ||||||
| # device type embedding models - "cpu" (default), "cuda" (nvidia gpu required) or "mps" (apple silicon) - choosing this right can lead to better performance | # device type embedding models - "cpu" (default), "cuda" (nvidia gpu required) or "mps" (apple silicon) - choosing this right can lead to better performance | ||||||
| USE_CUDA = os.environ.get("USE_CUDA_DOCKER", "false") | USE_CUDA = os.environ.get("USE_CUDA_DOCKER", "false") | ||||||
| 
 | 
 | ||||||
|  | @ -439,16 +458,15 @@ if USE_CUDA.lower() == "true": | ||||||
| else: | else: | ||||||
|     DEVICE_TYPE = "cpu" |     DEVICE_TYPE = "cpu" | ||||||
| 
 | 
 | ||||||
| 
 |  | ||||||
| CHROMA_CLIENT = chromadb.PersistentClient( | CHROMA_CLIENT = chromadb.PersistentClient( | ||||||
|     path=CHROMA_DATA_PATH, |     path=CHROMA_DATA_PATH, | ||||||
|     settings=Settings(allow_reset=True, anonymized_telemetry=False), |     settings=Settings(allow_reset=True, anonymized_telemetry=False), | ||||||
| ) | ) | ||||||
| CHUNK_SIZE = 1500 |  | ||||||
| CHUNK_OVERLAP = 100 |  | ||||||
| 
 | 
 | ||||||
|  | CHUNK_SIZE = int(os.environ.get("CHUNK_SIZE", "1500")) | ||||||
|  | CHUNK_OVERLAP = int(os.environ.get("CHUNK_OVERLAP", "100")) | ||||||
| 
 | 
 | ||||||
| RAG_TEMPLATE = """Use the following context as your learned knowledge, inside <context></context> XML tags. | DEFAULT_RAG_TEMPLATE = """Use the following context as your learned knowledge, inside <context></context> XML tags. | ||||||
| <context> | <context> | ||||||
|     [context] |     [context] | ||||||
| </context> | </context> | ||||||
|  | @ -462,6 +480,8 @@ And answer according to the language of the user's question. | ||||||
| Given the context information, answer the query. | Given the context information, answer the query. | ||||||
| Query: [query]""" | Query: [query]""" | ||||||
| 
 | 
 | ||||||
|  | RAG_TEMPLATE = os.environ.get("RAG_TEMPLATE", DEFAULT_RAG_TEMPLATE) | ||||||
|  | 
 | ||||||
| RAG_OPENAI_API_BASE_URL = os.getenv("RAG_OPENAI_API_BASE_URL", OPENAI_API_BASE_URL) | RAG_OPENAI_API_BASE_URL = os.getenv("RAG_OPENAI_API_BASE_URL", OPENAI_API_BASE_URL) | ||||||
| RAG_OPENAI_API_KEY = os.getenv("RAG_OPENAI_API_KEY", OPENAI_API_KEY) | RAG_OPENAI_API_KEY = os.getenv("RAG_OPENAI_API_KEY", OPENAI_API_KEY) | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
|  | @ -120,9 +120,11 @@ class RAGMiddleware(BaseHTTPMiddleware): | ||||||
|                     data["messages"], |                     data["messages"], | ||||||
|                     rag_app.state.RAG_TEMPLATE, |                     rag_app.state.RAG_TEMPLATE, | ||||||
|                     rag_app.state.TOP_K, |                     rag_app.state.TOP_K, | ||||||
|  |                     rag_app.state.RELEVANCE_THRESHOLD, | ||||||
|                     rag_app.state.RAG_EMBEDDING_ENGINE, |                     rag_app.state.RAG_EMBEDDING_ENGINE, | ||||||
|                     rag_app.state.RAG_EMBEDDING_MODEL, |                     rag_app.state.RAG_EMBEDDING_MODEL, | ||||||
|                     rag_app.state.sentence_transformer_ef, |                     rag_app.state.sentence_transformer_ef, | ||||||
|  |                     rag_app.state.sentence_transformer_rf, | ||||||
|                     rag_app.state.OPENAI_API_KEY, |                     rag_app.state.OPENAI_API_KEY, | ||||||
|                     rag_app.state.OPENAI_API_BASE_URL, |                     rag_app.state.OPENAI_API_BASE_URL, | ||||||
|                 ) |                 ) | ||||||
|  |  | ||||||
|  | @ -123,6 +123,7 @@ export const getQuerySettings = async (token: string) => { | ||||||
| 
 | 
 | ||||||
| type QuerySettings = { | type QuerySettings = { | ||||||
| 	k: number | null; | 	k: number | null; | ||||||
|  | 	r: number | null; | ||||||
| 	template: string | null; | 	template: string | null; | ||||||
| }; | }; | ||||||
| 
 | 
 | ||||||
|  | @ -413,3 +414,64 @@ export const updateEmbeddingConfig = async (token: string, payload: EmbeddingMod | ||||||
| 
 | 
 | ||||||
| 	return res; | 	return res; | ||||||
| }; | }; | ||||||
|  | 
 | ||||||
|  | export const getRerankingConfig = async (token: string) => { | ||||||
|  | 	let error = null; | ||||||
|  | 
 | ||||||
|  | 	const res = await fetch(`${RAG_API_BASE_URL}/reranking`, { | ||||||
|  | 		method: 'GET', | ||||||
|  | 		headers: { | ||||||
|  | 			'Content-Type': 'application/json', | ||||||
|  | 			Authorization: `Bearer ${token}` | ||||||
|  | 		} | ||||||
|  | 	}) | ||||||
|  | 		.then(async (res) => { | ||||||
|  | 			if (!res.ok) throw await res.json(); | ||||||
|  | 			return res.json(); | ||||||
|  | 		}) | ||||||
|  | 		.catch((err) => { | ||||||
|  | 			console.log(err); | ||||||
|  | 			error = err.detail; | ||||||
|  | 			return null; | ||||||
|  | 		}); | ||||||
|  | 
 | ||||||
|  | 	if (error) { | ||||||
|  | 		throw error; | ||||||
|  | 	} | ||||||
|  | 
 | ||||||
|  | 	return res; | ||||||
|  | }; | ||||||
|  | 
 | ||||||
|  | type RerankingModelUpdateForm = { | ||||||
|  | 	reranking_model: string; | ||||||
|  | }; | ||||||
|  | 
 | ||||||
|  | export const updateRerankingConfig = async (token: string, payload: RerankingModelUpdateForm) => { | ||||||
|  | 	let error = null; | ||||||
|  | 
 | ||||||
|  | 	const res = await fetch(`${RAG_API_BASE_URL}/reranking/update`, { | ||||||
|  | 		method: 'POST', | ||||||
|  | 		headers: { | ||||||
|  | 			'Content-Type': 'application/json', | ||||||
|  | 			Authorization: `Bearer ${token}` | ||||||
|  | 		}, | ||||||
|  | 		body: JSON.stringify({ | ||||||
|  | 			...payload | ||||||
|  | 		}) | ||||||
|  | 	}) | ||||||
|  | 		.then(async (res) => { | ||||||
|  | 			if (!res.ok) throw await res.json(); | ||||||
|  | 			return res.json(); | ||||||
|  | 		}) | ||||||
|  | 		.catch((err) => { | ||||||
|  | 			console.log(err); | ||||||
|  | 			error = err.detail; | ||||||
|  | 			return null; | ||||||
|  | 		}); | ||||||
|  | 
 | ||||||
|  | 	if (error) { | ||||||
|  | 		throw error; | ||||||
|  | 	} | ||||||
|  | 
 | ||||||
|  | 	return res; | ||||||
|  | }; | ||||||
|  |  | ||||||
|  | @ -8,7 +8,9 @@ | ||||||
| 		updateQuerySettings, | 		updateQuerySettings, | ||||||
| 		resetVectorDB, | 		resetVectorDB, | ||||||
| 		getEmbeddingConfig, | 		getEmbeddingConfig, | ||||||
| 		updateEmbeddingConfig | 		updateEmbeddingConfig, | ||||||
|  | 		getRerankingConfig, | ||||||
|  | 		updateRerankingConfig | ||||||
| 	} from '$lib/apis/rag'; | 	} from '$lib/apis/rag'; | ||||||
| 
 | 
 | ||||||
| 	import { documents, models } from '$lib/stores'; | 	import { documents, models } from '$lib/stores'; | ||||||
|  | @ -23,11 +25,13 @@ | ||||||
| 
 | 
 | ||||||
| 	let scanDirLoading = false; | 	let scanDirLoading = false; | ||||||
| 	let updateEmbeddingModelLoading = false; | 	let updateEmbeddingModelLoading = false; | ||||||
|  | 	let updateRerankingModelLoading = false; | ||||||
| 
 | 
 | ||||||
| 	let showResetConfirm = false; | 	let showResetConfirm = false; | ||||||
| 
 | 
 | ||||||
| 	let embeddingEngine = ''; | 	let embeddingEngine = ''; | ||||||
| 	let embeddingModel = ''; | 	let embeddingModel = ''; | ||||||
|  | 	let rerankingModel = ''; | ||||||
| 
 | 
 | ||||||
| 	let OpenAIKey = ''; | 	let OpenAIKey = ''; | ||||||
| 	let OpenAIUrl = ''; | 	let OpenAIUrl = ''; | ||||||
|  | @ -38,6 +42,7 @@ | ||||||
| 
 | 
 | ||||||
| 	let querySettings = { | 	let querySettings = { | ||||||
| 		template: '', | 		template: '', | ||||||
|  | 		r: 0.0, | ||||||
| 		k: 4 | 		k: 4 | ||||||
| 	}; | 	}; | ||||||
| 
 | 
 | ||||||
|  | @ -115,6 +120,29 @@ | ||||||
| 		} | 		} | ||||||
| 	}; | 	}; | ||||||
| 
 | 
 | ||||||
|  | 	const rerankingModelUpdateHandler = async () => { | ||||||
|  | 		console.log('Update reranking model attempt:', rerankingModel); | ||||||
|  | 
 | ||||||
|  | 		updateRerankingModelLoading = true; | ||||||
|  | 		const res = await updateRerankingConfig(localStorage.token, { | ||||||
|  | 			reranking_model: rerankingModel | ||||||
|  | 		}).catch(async (error) => { | ||||||
|  | 			toast.error(error); | ||||||
|  | 			await setRerankingConfig(); | ||||||
|  | 			return null; | ||||||
|  | 		}); | ||||||
|  | 		updateRerankingModelLoading = false; | ||||||
|  | 
 | ||||||
|  | 		if (res) { | ||||||
|  | 			console.log('rerankingModelUpdateHandler:', res); | ||||||
|  | 			if (res.status === true) { | ||||||
|  | 				toast.success($i18n.t('Reranking model set to "{{reranking_model}}"', res), { | ||||||
|  | 					duration: 1000 * 10 | ||||||
|  | 				}); | ||||||
|  | 			} | ||||||
|  | 		} | ||||||
|  | 	}; | ||||||
|  | 
 | ||||||
| 	const submitHandler = async () => { | 	const submitHandler = async () => { | ||||||
| 		const res = await updateRAGConfig(localStorage.token, { | 		const res = await updateRAGConfig(localStorage.token, { | ||||||
| 			pdf_extract_images: pdfExtractImages, | 			pdf_extract_images: pdfExtractImages, | ||||||
|  | @ -138,6 +166,14 @@ | ||||||
| 		} | 		} | ||||||
| 	}; | 	}; | ||||||
| 
 | 
 | ||||||
|  | 	const setRerankingConfig = async () => { | ||||||
|  | 		const rerankingConfig = await getRerankingConfig(localStorage.token); | ||||||
|  | 
 | ||||||
|  | 		if (rerankingConfig) { | ||||||
|  | 			rerankingModel = rerankingConfig.reranking_model; | ||||||
|  | 		} | ||||||
|  | 	}; | ||||||
|  | 
 | ||||||
| 	onMount(async () => { | 	onMount(async () => { | ||||||
| 		const res = await getRAGConfig(localStorage.token); | 		const res = await getRAGConfig(localStorage.token); | ||||||
| 
 | 
 | ||||||
|  | @ -149,6 +185,7 @@ | ||||||
| 		} | 		} | ||||||
| 
 | 
 | ||||||
| 		await setEmbeddingConfig(); | 		await setEmbeddingConfig(); | ||||||
|  | 		await setRerankingConfig(); | ||||||
| 
 | 
 | ||||||
| 		querySettings = await getQuerySettings(localStorage.token); | 		querySettings = await getQuerySettings(localStorage.token); | ||||||
| 	}); | 	}); | ||||||
|  | @ -349,6 +386,79 @@ | ||||||
| 
 | 
 | ||||||
| 				<hr class=" dark:border-gray-700 my-3" /> | 				<hr class=" dark:border-gray-700 my-3" /> | ||||||
| 
 | 
 | ||||||
|  | 				<div class=" "> | ||||||
|  | 					<div class=" mb-2 text-sm font-medium">{$i18n.t('Update Reranking Model')}</div> | ||||||
|  | 
 | ||||||
|  | 					<div class="flex w-full"> | ||||||
|  | 						<div class="flex-1 mr-2"> | ||||||
|  | 							<input | ||||||
|  | 								class="w-full rounded-lg py-2 px-4 text-sm dark:text-gray-300 dark:bg-gray-850 outline-none" | ||||||
|  | 								placeholder={$i18n.t('Update reranking model (e.g. {{model}})', { | ||||||
|  | 									model: rerankingModel.slice(-40) | ||||||
|  | 								})} | ||||||
|  | 								bind:value={rerankingModel} | ||||||
|  | 							/> | ||||||
|  | 						</div> | ||||||
|  | 						<button | ||||||
|  | 							class="px-2.5 bg-gray-100 hover:bg-gray-200 text-gray-800 dark:bg-gray-850 dark:hover:bg-gray-800 dark:text-gray-100 rounded-lg transition" | ||||||
|  | 							on:click={() => { | ||||||
|  | 								rerankingModelUpdateHandler(); | ||||||
|  | 							}} | ||||||
|  | 							disabled={updateRerankingModelLoading} | ||||||
|  | 						> | ||||||
|  | 							{#if updateRerankingModelLoading} | ||||||
|  | 								<div class="self-center"> | ||||||
|  | 									<svg | ||||||
|  | 										class=" w-4 h-4" | ||||||
|  | 										viewBox="0 0 24 24" | ||||||
|  | 										fill="currentColor" | ||||||
|  | 										xmlns="http://www.w3.org/2000/svg" | ||||||
|  | 										><style> | ||||||
|  | 											.spinner_ajPY { | ||||||
|  | 												transform-origin: center; | ||||||
|  | 												animation: spinner_AtaB 0.75s infinite linear; | ||||||
|  | 											} | ||||||
|  | 											@keyframes spinner_AtaB { | ||||||
|  | 												100% { | ||||||
|  | 													transform: rotate(360deg); | ||||||
|  | 												} | ||||||
|  | 											} | ||||||
|  | 										</style><path | ||||||
|  | 											d="M12,1A11,11,0,1,0,23,12,11,11,0,0,0,12,1Zm0,19a8,8,0,1,1,8-8A8,8,0,0,1,12,20Z" | ||||||
|  | 											opacity=".25" | ||||||
|  | 										/><path | ||||||
|  | 											d="M10.14,1.16a11,11,0,0,0-9,8.92A1.59,1.59,0,0,0,2.46,12,1.52,1.52,0,0,0,4.11,10.7a8,8,0,0,1,6.66-6.61A1.42,1.42,0,0,0,12,2.69h0A1.57,1.57,0,0,0,10.14,1.16Z" | ||||||
|  | 											class="spinner_ajPY" | ||||||
|  | 										/></svg | ||||||
|  | 									> | ||||||
|  | 								</div> | ||||||
|  | 							{:else} | ||||||
|  | 								<svg | ||||||
|  | 									xmlns="http://www.w3.org/2000/svg" | ||||||
|  | 									viewBox="0 0 16 16" | ||||||
|  | 									fill="currentColor" | ||||||
|  | 									class="w-4 h-4" | ||||||
|  | 								> | ||||||
|  | 									<path | ||||||
|  | 										d="M8.75 2.75a.75.75 0 0 0-1.5 0v5.69L5.03 6.22a.75.75 0 0 0-1.06 1.06l3.5 3.5a.75.75 0 0 0 1.06 0l3.5-3.5a.75.75 0 0 0-1.06-1.06L8.75 8.44V2.75Z" | ||||||
|  | 									/> | ||||||
|  | 									<path | ||||||
|  | 										d="M3.5 9.75a.75.75 0 0 0-1.5 0v1.5A2.75 2.75 0 0 0 4.75 14h6.5A2.75 2.75 0 0 0 14 11.25v-1.5a.75.75 0 0 0-1.5 0v1.5c0 .69-.56 1.25-1.25 1.25h-6.5c-.69 0-1.25-.56-1.25-1.25v-1.5Z" | ||||||
|  | 									/> | ||||||
|  | 								</svg> | ||||||
|  | 							{/if} | ||||||
|  | 						</button> | ||||||
|  | 					</div> | ||||||
|  | 				</div> | ||||||
|  | 
 | ||||||
|  | 				<div class="mt-2 mb-1 text-xs text-gray-400 dark:text-gray-500"> | ||||||
|  | 					{$i18n.t( | ||||||
|  | 						'Note: If you choose a reranking model, it will use that to score and rerank instead of the embedding model.' | ||||||
|  | 					)} | ||||||
|  | 				</div> | ||||||
|  | 
 | ||||||
|  | 				<hr class=" dark:border-gray-700 my-3" /> | ||||||
|  | 
 | ||||||
| 				<div class="  flex w-full justify-between"> | 				<div class="  flex w-full justify-between"> | ||||||
| 					<div class=" self-center text-xs font-medium"> | 					<div class=" self-center text-xs font-medium"> | ||||||
| 						{$i18n.t('Scan for documents from {{path}}', { path: '/data/docs' })} | 						{$i18n.t('Scan for documents from {{path}}', { path: '/data/docs' })} | ||||||
|  | @ -473,6 +583,26 @@ | ||||||
| 						</div> | 						</div> | ||||||
| 					</div> | 					</div> | ||||||
| 
 | 
 | ||||||
|  | 					<div class=" flex"> | ||||||
|  | 						<div class="  flex w-full justify-between"> | ||||||
|  | 							<div class="self-center text-xs font-medium flex-1"> | ||||||
|  | 								{$i18n.t('Relevance Threshold')} | ||||||
|  | 							</div> | ||||||
|  | 
 | ||||||
|  | 							<div class="self-center p-3"> | ||||||
|  | 								<input | ||||||
|  | 									class=" w-full rounded-lg py-1.5 px-4 text-sm dark:text-gray-300 dark:bg-gray-850 outline-none" | ||||||
|  | 									type="number" | ||||||
|  | 									step="0.01" | ||||||
|  | 									placeholder={$i18n.t('Enter Relevance Threshold')} | ||||||
|  | 									bind:value={querySettings.r} | ||||||
|  | 									autocomplete="off" | ||||||
|  | 									min="0.0" | ||||||
|  | 								/> | ||||||
|  | 							</div> | ||||||
|  | 						</div> | ||||||
|  | 					</div> | ||||||
|  | 
 | ||||||
| 					<div> | 					<div> | ||||||
| 						<div class=" mb-2.5 text-sm font-medium">{$i18n.t('RAG Template')}</div> | 						<div class=" mb-2.5 text-sm font-medium">{$i18n.t('RAG Template')}</div> | ||||||
| 						<textarea | 						<textarea | ||||||
|  |  | ||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue
	
	 Timothy Jaeryang Baek
						Timothy Jaeryang Baek