forked from open-webui/open-webui
cuda support
This commit is contained in:
parent
c5948d3e2c
commit
5abe0089cb
1 changed files with 21 additions and 11 deletions
32
Dockerfile
32
Dockerfile
|
@ -37,7 +37,7 @@ ENV OPENAI_API_KEY="" \
|
|||
SCARF_NO_ANALYTICS=true \
|
||||
DO_NOT_TRACK=true
|
||||
|
||||
#### Preloaded models ##########################################################
|
||||
#### Preloaded models #########################################################
|
||||
## whisper TTS Settings ##
|
||||
ENV WHISPER_MODEL="base" \
|
||||
WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models"
|
||||
|
@ -48,19 +48,32 @@ ENV WHISPER_MODEL="base" \
|
|||
# for better persormance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB)
|
||||
# IMPORTANT: If you change the default model (all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them.
|
||||
ENV RAG_EMBEDDING_MODEL="all-MiniLM-L6-v2" \
|
||||
# device type for whisper tts and embbeding models - "cpu" (default), "cuda" (nvidia gpu and CUDA required) or "mps" (apple silicon) - choosing this right can lead to better performance
|
||||
RAG_EMBEDDING_MODEL_DEVICE_TYPE="cpu" \
|
||||
RAG_EMBEDDING_MODEL_DIR="/app/backend/data/cache/embedding/models" \
|
||||
SENTENCE_TRANSFORMERS_HOME="/app/backend/data/cache/embedding/models"
|
||||
SENTENCE_TRANSFORMERS_HOME="/app/backend/data/cache/embedding/models" \
|
||||
# device type for whisper tts and embbeding models - "cpu" (default) or "mps" (apple silicon) - choosing this right can lead to better performance
|
||||
# Important:
|
||||
# If you want to use CUDA you need to install the nvidia-container-toolkit (https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
|
||||
# you can set this to "cuda" but its recomended to use --build-arg CUDA_ENABLED=true flag when building the image
|
||||
RAG_EMBEDDING_MODEL_DEVICE_TYPE="cuda"
|
||||
# device type for whisper tts and embbeding models - "cpu" (default), "cuda" (nvidia gpu and CUDA required) or "mps" (apple silicon) - choosing this right can lead to better performance
|
||||
#### Preloaded models ##########################################################
|
||||
|
||||
WORKDIR /app/backend
|
||||
|
||||
# install python dependencies
|
||||
COPY ./backend/requirements.txt ./requirements.txt
|
||||
|
||||
RUN pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir \
|
||||
&& pip3 install -r requirements.txt --no-cache-dir
|
||||
RUN pip3 install -r requirements.txt --no-cache-dir
|
||||
|
||||
RUN if [ "$RAG_EMBEDDING_MODEL_DEVICE_TYPE" = "cuda" ]; then \
|
||||
echo "CUDA enabled" && \
|
||||
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117 --no-cache-dir; \
|
||||
else \
|
||||
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && \
|
||||
python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device=os.environ['RAG_EMBEDDING_MODEL_DEVICE_TYPE'])"; \
|
||||
fi
|
||||
|
||||
# preload tts model
|
||||
RUN python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='auto', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"
|
||||
|
||||
# install required packages
|
||||
RUN apt-get update \
|
||||
|
@ -71,10 +84,7 @@ RUN apt-get update \
|
|||
# cleanup
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# preload embedding model
|
||||
RUN python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device=os.environ['RAG_EMBEDDING_MODEL_DEVICE_TYPE'])"
|
||||
# preload tts model
|
||||
RUN python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='auto', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"
|
||||
|
||||
|
||||
# copy embedding weight from build
|
||||
# RUN mkdir -p /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2
|
||||
|
|
Loading…
Reference in a new issue