Merge pull request #1756 from buroa/buroa/toggle-hybrid

feat: toggle hybrid search
This commit is contained in:
Timothy Jaeryang Baek 2024-04-26 11:48:44 -07:00 committed by GitHub
commit 543707eefd
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 156 additions and 103 deletions

View file

@ -70,6 +70,7 @@ from config import (
RAG_EMBEDDING_MODEL,
RAG_EMBEDDING_MODEL_AUTO_UPDATE,
RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
ENABLE_RAG_HYBRID_SEARCH,
RAG_RERANKING_MODEL,
RAG_RERANKING_MODEL_AUTO_UPDATE,
RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
@ -91,6 +92,9 @@ app = FastAPI()
app.state.TOP_K = RAG_TOP_K
app.state.RELEVANCE_THRESHOLD = RAG_RELEVANCE_THRESHOLD
app.state.ENABLE_RAG_HYBRID_SEARCH = ENABLE_RAG_HYBRID_SEARCH
app.state.CHUNK_SIZE = CHUNK_SIZE
app.state.CHUNK_OVERLAP = CHUNK_OVERLAP
@ -321,6 +325,7 @@ async def get_query_settings(user=Depends(get_admin_user)):
"template": app.state.RAG_TEMPLATE,
"k": app.state.TOP_K,
"r": app.state.RELEVANCE_THRESHOLD,
"hybrid": app.state.ENABLE_RAG_HYBRID_SEARCH,
}
@ -328,6 +333,7 @@ class QuerySettingsForm(BaseModel):
k: Optional[int] = None
r: Optional[float] = None
template: Optional[str] = None
hybrid: Optional[bool] = None
@app.post("/query/settings/update")
@ -337,7 +343,14 @@ async def update_query_settings(
app.state.RAG_TEMPLATE = form_data.template if form_data.template else RAG_TEMPLATE
app.state.TOP_K = form_data.k if form_data.k else 4
app.state.RELEVANCE_THRESHOLD = form_data.r if form_data.r else 0.0
return {"status": True, "template": app.state.RAG_TEMPLATE}
app.state.ENABLE_RAG_HYBRID_SEARCH = form_data.hybrid if form_data.hybrid else False
return {
"status": True,
"template": app.state.RAG_TEMPLATE,
"k": app.state.TOP_K,
"r": app.state.RELEVANCE_THRESHOLD,
"hybrid": app.state.ENABLE_RAG_HYBRID_SEARCH,
}
class QueryDocForm(BaseModel):
@ -345,6 +358,7 @@ class QueryDocForm(BaseModel):
query: str
k: Optional[int] = None
r: Optional[float] = None
hybrid: Optional[bool] = None
@app.post("/query/doc")
@ -368,6 +382,11 @@ def query_doc_handler(
r=form_data.r if form_data.r else app.state.RELEVANCE_THRESHOLD,
embeddings_function=embeddings_function,
reranking_function=app.state.sentence_transformer_rf,
hybrid_search=(
form_data.hybrid
if form_data.hybrid
else app.state.ENABLE_RAG_HYBRID_SEARCH
),
)
except Exception as e:
log.exception(e)
@ -382,6 +401,7 @@ class QueryCollectionsForm(BaseModel):
query: str
k: Optional[int] = None
r: Optional[float] = None
hybrid: Optional[bool] = None
@app.post("/query/collection")
@ -405,6 +425,11 @@ def query_collection_handler(
r=form_data.r if form_data.r else app.state.RELEVANCE_THRESHOLD,
embeddings_function=embeddings_function,
reranking_function=app.state.sentence_transformer_rf,
hybrid_search=(
form_data.hybrid
if form_data.hybrid
else app.state.ENABLE_RAG_HYBRID_SEARCH
),
)
except Exception as e:
log.exception(e)

View file

@ -18,8 +18,6 @@ from langchain.retrievers import (
EnsembleRetriever,
)
from sentence_transformers import CrossEncoder
from typing import Optional
from config import SRC_LOG_LEVELS, CHROMA_CLIENT
@ -32,16 +30,15 @@ def query_embeddings_doc(
collection_name: str,
query: str,
embeddings_function,
reranking_function,
k: int,
reranking_function: Optional[CrossEncoder] = None,
r: Optional[float] = None,
r: int,
hybrid_search: bool,
):
try:
collection = CHROMA_CLIENT.get_collection(name=collection_name)
if reranking_function:
# if you use docker use the model from the environment variable
collection = CHROMA_CLIENT.get_collection(name=collection_name)
if hybrid_search:
documents = collection.get() # get all documents
bm25_retriever = BM25Retriever.from_texts(
texts=documents.get("documents"),
@ -77,24 +74,19 @@ def query_embeddings_doc(
"metadatas": [[d.metadata for d in result]],
}
else:
# if you use docker use the model from the environment variable
query_embeddings = embeddings_function(query)
log.info(f"query_embeddings_doc {query_embeddings}")
collection = CHROMA_CLIENT.get_collection(name=collection_name)
result = collection.query(
query_embeddings=[query_embeddings],
n_results=k,
)
log.info(f"query_embeddings_doc:result {result}")
log.info(f"query_embeddings_doc:result {result}")
return result
except Exception as e:
raise e
def merge_and_sort_query_results(query_results, k):
def merge_and_sort_query_results(query_results, k, reverse=False):
# Initialize lists to store combined data
combined_distances = []
combined_documents = []
@ -109,7 +101,7 @@ def merge_and_sort_query_results(query_results, k):
combined = list(zip(combined_distances, combined_documents, combined_metadatas))
# Sort the list based on distances
combined.sort(key=lambda x: x[0])
combined.sort(key=lambda x: x[0], reverse=reverse)
# We don't have anything :-(
if not combined:
@ -142,6 +134,7 @@ def query_embeddings_collection(
r: float,
embeddings_function,
reranking_function,
hybrid_search: bool,
):
results = []
@ -155,12 +148,14 @@ def query_embeddings_collection(
r=r,
embeddings_function=embeddings_function,
reranking_function=reranking_function,
hybrid_search=hybrid_search,
)
results.append(result)
except:
pass
return merge_and_sort_query_results(results, k)
reverse = hybrid and reranking_function is not None
return merge_and_sort_query_results(results, k=k, reverse=reverse)
def rag_template(template: str, context: str, query: str):
@ -211,6 +206,7 @@ def rag_messages(
template,
k,
r,
hybrid_search,
embedding_engine,
embedding_model,
embedding_function,
@ -283,6 +279,7 @@ def rag_messages(
r=r,
embeddings_function=embeddings_function,
reranking_function=reranking_function,
hybrid_search=hybrid_search,
)
else:
context = query_embeddings_doc(
@ -292,6 +289,7 @@ def rag_messages(
r=r,
embeddings_function=embeddings_function,
reranking_function=reranking_function,
hybrid_search=hybrid_search,
)
except Exception as e:
log.exception(e)
@ -479,7 +477,9 @@ class RerankCompressor(BaseDocumentCompressor):
(d, s) for d, s in docs_with_scores if s >= self.r_score
]
result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
reverse = self.reranking_function is not None
result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=reverse)
final_results = []
for doc, doc_score in result[: self.top_n]:
metadata = doc.metadata

View file

@ -423,6 +423,10 @@ CHROMA_DATA_PATH = f"{DATA_DIR}/vector_db"
RAG_TOP_K = int(os.environ.get("RAG_TOP_K", "5"))
RAG_RELEVANCE_THRESHOLD = float(os.environ.get("RAG_RELEVANCE_THRESHOLD", "0.0"))
ENABLE_RAG_HYBRID_SEARCH = (
os.environ.get("ENABLE_RAG_HYBRID_SEARCH", "").lower() == "true"
)
RAG_EMBEDDING_ENGINE = os.environ.get("RAG_EMBEDDING_ENGINE", "")
RAG_EMBEDDING_MODEL = os.environ.get(

View file

@ -121,6 +121,7 @@ class RAGMiddleware(BaseHTTPMiddleware):
rag_app.state.RAG_TEMPLATE,
rag_app.state.TOP_K,
rag_app.state.RELEVANCE_THRESHOLD,
rag_app.state.ENABLE_RAG_HYBRID_SEARCH,
rag_app.state.RAG_EMBEDDING_ENGINE,
rag_app.state.RAG_EMBEDDING_MODEL,
rag_app.state.sentence_transformer_ef,