forked from open-webui/open-webui
feat: hybrid search
This commit is contained in:
parent
f3e5700d49
commit
4e0b32b505
7 changed files with 406 additions and 110 deletions
|
@ -1,5 +1,8 @@
|
|||
import logging
|
||||
import requests
|
||||
import operator
|
||||
|
||||
import sentence_transformers
|
||||
|
||||
from typing import List
|
||||
|
||||
|
@ -8,6 +11,11 @@ from apps.ollama.main import (
|
|||
GenerateEmbeddingsForm,
|
||||
)
|
||||
|
||||
from langchain.retrievers import (
|
||||
BM25Retriever,
|
||||
EnsembleRetriever,
|
||||
)
|
||||
|
||||
from config import SRC_LOG_LEVELS, CHROMA_CLIENT
|
||||
|
||||
|
||||
|
@ -15,60 +23,96 @@ log = logging.getLogger(__name__)
|
|||
log.setLevel(SRC_LOG_LEVELS["RAG"])
|
||||
|
||||
|
||||
def query_embeddings_doc(collection_name: str, query: str, query_embeddings, k: int):
|
||||
def query_embeddings_doc(
|
||||
collection_name: str,
|
||||
query: str,
|
||||
k: int,
|
||||
embeddings_function,
|
||||
reranking_function,
|
||||
):
|
||||
try:
|
||||
# if you use docker use the model from the environment variable
|
||||
log.info(f"query_embeddings_doc {query_embeddings}")
|
||||
collection = CHROMA_CLIENT.get_collection(name=collection_name)
|
||||
|
||||
result = collection.query(
|
||||
query_embeddings=[query_embeddings],
|
||||
n_results=k,
|
||||
# keyword search
|
||||
documents = collection.get() # get all documents
|
||||
bm25_retriever = BM25Retriever.from_texts(
|
||||
texts=documents.get("documents"),
|
||||
metadatas=documents.get("metadatas"),
|
||||
)
|
||||
bm25_retriever.k = k
|
||||
|
||||
# semantic search (vector)
|
||||
chroma_retriever = ChromaRetriever(
|
||||
collection=collection,
|
||||
k=k,
|
||||
embeddings_function=embeddings_function,
|
||||
)
|
||||
|
||||
log.info(f"query_embeddings_doc:result {result}")
|
||||
# hybrid search (ensemble)
|
||||
ensemble_retriever = EnsembleRetriever(
|
||||
retrievers=[bm25_retriever, chroma_retriever],
|
||||
weights=[0.6, 0.4]
|
||||
)
|
||||
|
||||
documents = ensemble_retriever.invoke(query)
|
||||
result = query_results_rank(
|
||||
query=query,
|
||||
documents=documents,
|
||||
k=k,
|
||||
reranking_function=reranking_function,
|
||||
)
|
||||
result = {
|
||||
"distances": [[d[1].item() for d in result]],
|
||||
"documents": [[d[0].page_content for d in result]],
|
||||
"metadatas": [[d[0].metadata for d in result]],
|
||||
}
|
||||
|
||||
return result
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
|
||||
def query_results_rank(query: str, documents, k: int, reranking_function):
|
||||
scores = reranking_function.predict([(query, doc.page_content) for doc in documents])
|
||||
docs_with_scores = list(zip(documents, scores))
|
||||
result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
|
||||
return result[: k]
|
||||
|
||||
|
||||
def merge_and_sort_query_results(query_results, k):
|
||||
# Initialize lists to store combined data
|
||||
combined_ids = []
|
||||
combined_distances = []
|
||||
combined_metadatas = []
|
||||
combined_documents = []
|
||||
combined_metadatas = []
|
||||
|
||||
# Combine data from each dictionary
|
||||
for data in query_results:
|
||||
combined_ids.extend(data["ids"][0])
|
||||
combined_distances.extend(data["distances"][0])
|
||||
combined_metadatas.extend(data["metadatas"][0])
|
||||
combined_documents.extend(data["documents"][0])
|
||||
combined_metadatas.extend(data["metadatas"][0])
|
||||
|
||||
# Create a list of tuples (distance, id, metadata, document)
|
||||
# Create a list of tuples (distance, document, metadata)
|
||||
combined = list(
|
||||
zip(combined_distances, combined_ids, combined_metadatas, combined_documents)
|
||||
zip(combined_distances, combined_documents, combined_metadatas)
|
||||
)
|
||||
|
||||
# Sort the list based on distances
|
||||
combined.sort(key=lambda x: x[0])
|
||||
|
||||
# Unzip the sorted list
|
||||
sorted_distances, sorted_ids, sorted_metadatas, sorted_documents = zip(*combined)
|
||||
sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
|
||||
|
||||
# Slicing the lists to include only k elements
|
||||
sorted_distances = list(sorted_distances)[:k]
|
||||
sorted_ids = list(sorted_ids)[:k]
|
||||
sorted_metadatas = list(sorted_metadatas)[:k]
|
||||
sorted_documents = list(sorted_documents)[:k]
|
||||
sorted_metadatas = list(sorted_metadatas)[:k]
|
||||
|
||||
# Create the output dictionary
|
||||
merged_query_results = {
|
||||
"ids": [sorted_ids],
|
||||
"distances": [sorted_distances],
|
||||
"metadatas": [sorted_metadatas],
|
||||
"documents": [sorted_documents],
|
||||
"metadatas": [sorted_metadatas],
|
||||
"embeddings": None,
|
||||
"uris": None,
|
||||
"data": None,
|
||||
|
@ -78,19 +122,23 @@ def merge_and_sort_query_results(query_results, k):
|
|||
|
||||
|
||||
def query_embeddings_collection(
|
||||
collection_names: List[str], query: str, query_embeddings, k: int
|
||||
collection_names: List[str],
|
||||
query: str,
|
||||
k: int,
|
||||
embeddings_function,
|
||||
reranking_function,
|
||||
):
|
||||
|
||||
results = []
|
||||
log.info(f"query_embeddings_collection {query_embeddings}")
|
||||
|
||||
for collection_name in collection_names:
|
||||
try:
|
||||
result = query_embeddings_doc(
|
||||
collection_name=collection_name,
|
||||
query=query,
|
||||
query_embeddings=query_embeddings,
|
||||
k=k,
|
||||
embeddings_function=embeddings_function,
|
||||
reranking_function=reranking_function,
|
||||
)
|
||||
results.append(result)
|
||||
except:
|
||||
|
@ -105,6 +153,33 @@ def rag_template(template: str, context: str, query: str):
|
|||
return template
|
||||
|
||||
|
||||
def query_embeddings_function(
|
||||
embedding_engine,
|
||||
embedding_model,
|
||||
embedding_function,
|
||||
openai_key,
|
||||
openai_url,
|
||||
):
|
||||
if embedding_engine == "":
|
||||
return lambda query: embedding_function.encode(query).tolist()
|
||||
elif embedding_engine == "ollama":
|
||||
return lambda query: generate_ollama_embeddings(
|
||||
GenerateEmbeddingsForm(
|
||||
**{
|
||||
"model": embedding_model,
|
||||
"prompt": query,
|
||||
}
|
||||
)
|
||||
)
|
||||
elif embedding_engine == "openai":
|
||||
return lambda query: generate_openai_embeddings(
|
||||
model=embedding_model,
|
||||
text=query,
|
||||
key=openai_key,
|
||||
url=openai_url,
|
||||
)
|
||||
|
||||
|
||||
def rag_messages(
|
||||
docs,
|
||||
messages,
|
||||
|
@ -113,11 +188,12 @@ def rag_messages(
|
|||
embedding_engine,
|
||||
embedding_model,
|
||||
embedding_function,
|
||||
reranking_function,
|
||||
openai_key,
|
||||
openai_url,
|
||||
):
|
||||
log.debug(
|
||||
f"docs: {docs} {messages} {embedding_engine} {embedding_model} {embedding_function} {openai_key} {openai_url}"
|
||||
f"docs: {docs} {messages} {embedding_engine} {embedding_model} {embedding_function} {reranking_function} {openai_key} {openai_url}"
|
||||
)
|
||||
|
||||
last_user_message_idx = None
|
||||
|
@ -155,38 +231,29 @@ def rag_messages(
|
|||
if doc["type"] == "text":
|
||||
context = doc["content"]
|
||||
else:
|
||||
if embedding_engine == "":
|
||||
query_embeddings = embedding_function.encode(query).tolist()
|
||||
elif embedding_engine == "ollama":
|
||||
query_embeddings = generate_ollama_embeddings(
|
||||
GenerateEmbeddingsForm(
|
||||
**{
|
||||
"model": embedding_model,
|
||||
"prompt": query,
|
||||
}
|
||||
)
|
||||
)
|
||||
elif embedding_engine == "openai":
|
||||
query_embeddings = generate_openai_embeddings(
|
||||
model=embedding_model,
|
||||
text=query,
|
||||
key=openai_key,
|
||||
url=openai_url,
|
||||
)
|
||||
embeddings_function = query_embeddings_function(
|
||||
embedding_engine,
|
||||
embedding_model,
|
||||
embedding_function,
|
||||
openai_key,
|
||||
openai_url,
|
||||
)
|
||||
|
||||
if doc["type"] == "collection":
|
||||
context = query_embeddings_collection(
|
||||
collection_names=doc["collection_names"],
|
||||
query=query,
|
||||
query_embeddings=query_embeddings,
|
||||
k=k,
|
||||
embeddings_function=embeddings_function,
|
||||
reranking_function=reranking_function,
|
||||
)
|
||||
else:
|
||||
context = query_embeddings_doc(
|
||||
collection_name=doc["collection_name"],
|
||||
query=query,
|
||||
query_embeddings=query_embeddings,
|
||||
k=k,
|
||||
embeddings_function=embeddings_function,
|
||||
reranking_function=reranking_function,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
|
@ -250,3 +317,41 @@ def generate_openai_embeddings(
|
|||
except Exception as e:
|
||||
print(e)
|
||||
return None
|
||||
|
||||
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
|
||||
|
||||
class ChromaRetriever(BaseRetriever):
|
||||
collection: Any
|
||||
k: int
|
||||
embeddings_function: Any
|
||||
|
||||
def _get_relevant_documents(
|
||||
self,
|
||||
query: str,
|
||||
*,
|
||||
run_manager: CallbackManagerForRetrieverRun,
|
||||
) -> List[Document]:
|
||||
query_embeddings = self.embeddings_function(query)
|
||||
|
||||
results = self.collection.query(
|
||||
query_embeddings=[query_embeddings],
|
||||
n_results=self.k,
|
||||
)
|
||||
|
||||
ids = results["ids"][0]
|
||||
metadatas = results["metadatas"][0]
|
||||
documents = results["documents"][0]
|
||||
|
||||
return [
|
||||
Document(
|
||||
metadata=metadatas[idx],
|
||||
page_content=documents[idx],
|
||||
)
|
||||
for idx in range(len(ids))
|
||||
]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue