forked from open-webui/open-webui
Merge pull request #1630 from cheahjs/feat/split-large-chunks
feat: split large openai responses into smaller chunks
This commit is contained in:
commit
2d7d6cfffc
5 changed files with 121 additions and 52 deletions
70
src/lib/apis/streaming/index.ts
Normal file
70
src/lib/apis/streaming/index.ts
Normal file
|
@ -0,0 +1,70 @@
|
|||
type TextStreamUpdate = {
|
||||
done: boolean;
|
||||
value: string;
|
||||
};
|
||||
|
||||
// createOpenAITextStream takes a ReadableStreamDefaultReader from an SSE response,
|
||||
// and returns an async generator that emits delta updates with large deltas chunked into random sized chunks
|
||||
export async function createOpenAITextStream(
|
||||
messageStream: ReadableStreamDefaultReader,
|
||||
splitLargeDeltas: boolean
|
||||
): Promise<AsyncGenerator<TextStreamUpdate>> {
|
||||
let iterator = openAIStreamToIterator(messageStream);
|
||||
if (splitLargeDeltas) {
|
||||
iterator = streamLargeDeltasAsRandomChunks(iterator);
|
||||
}
|
||||
return iterator;
|
||||
}
|
||||
|
||||
async function* openAIStreamToIterator(
|
||||
reader: ReadableStreamDefaultReader
|
||||
): AsyncGenerator<TextStreamUpdate> {
|
||||
while (true) {
|
||||
const { value, done } = await reader.read();
|
||||
if (done) {
|
||||
yield { done: true, value: '' };
|
||||
break;
|
||||
}
|
||||
const lines = value.split('\n');
|
||||
for (const line of lines) {
|
||||
if (line !== '') {
|
||||
console.log(line);
|
||||
if (line === 'data: [DONE]') {
|
||||
yield { done: true, value: '' };
|
||||
} else {
|
||||
const data = JSON.parse(line.replace(/^data: /, ''));
|
||||
console.log(data);
|
||||
|
||||
yield { done: false, value: data.choices[0].delta.content ?? '' };
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// streamLargeDeltasAsRandomChunks will chunk large deltas (length > 5) into random sized chunks between 1-3 characters
|
||||
// This is to simulate a more fluid streaming, even though some providers may send large chunks of text at once
|
||||
async function* streamLargeDeltasAsRandomChunks(
|
||||
iterator: AsyncGenerator<TextStreamUpdate>
|
||||
): AsyncGenerator<TextStreamUpdate> {
|
||||
for await (const textStreamUpdate of iterator) {
|
||||
if (textStreamUpdate.done) {
|
||||
yield textStreamUpdate;
|
||||
return;
|
||||
}
|
||||
let content = textStreamUpdate.value;
|
||||
if (content.length < 5) {
|
||||
yield { done: false, value: content };
|
||||
continue;
|
||||
}
|
||||
while (content != '') {
|
||||
const chunkSize = Math.min(Math.floor(Math.random() * 3) + 1, content.length);
|
||||
const chunk = content.slice(0, chunkSize);
|
||||
yield { done: false, value: chunk };
|
||||
await sleep(5);
|
||||
content = content.slice(chunkSize);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const sleep = (ms: number) => new Promise((resolve) => setTimeout(resolve, ms));
|
|
@ -17,11 +17,17 @@
|
|||
let titleAutoGenerateModelExternal = '';
|
||||
let fullScreenMode = false;
|
||||
let titleGenerationPrompt = '';
|
||||
let splitLargeChunks = false;
|
||||
|
||||
// Interface
|
||||
let promptSuggestions = [];
|
||||
let showUsername = false;
|
||||
|
||||
const toggleSplitLargeChunks = async () => {
|
||||
splitLargeChunks = !splitLargeChunks;
|
||||
saveSettings({ splitLargeChunks: splitLargeChunks });
|
||||
};
|
||||
|
||||
const toggleFullScreenMode = async () => {
|
||||
fullScreenMode = !fullScreenMode;
|
||||
saveSettings({ fullScreenMode: fullScreenMode });
|
||||
|
@ -197,6 +203,28 @@
|
|||
</button>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div>
|
||||
<div class=" py-0.5 flex w-full justify-between">
|
||||
<div class=" self-center text-xs font-medium">
|
||||
{$i18n.t('Fluidly stream large external response chunks')}
|
||||
</div>
|
||||
|
||||
<button
|
||||
class="p-1 px-3 text-xs flex rounded transition"
|
||||
on:click={() => {
|
||||
toggleSplitLargeChunks();
|
||||
}}
|
||||
type="button"
|
||||
>
|
||||
{#if splitLargeChunks === true}
|
||||
<span class="ml-2 self-center">{$i18n.t('On')}</span>
|
||||
{:else}
|
||||
<span class="ml-2 self-center">{$i18n.t('Off')}</span>
|
||||
{/if}
|
||||
</button>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<hr class=" dark:border-gray-700" />
|
||||
|
|
|
@ -152,6 +152,7 @@
|
|||
"File Mode": "",
|
||||
"File not found.": "",
|
||||
"Fingerprint spoofing detected: Unable to use initials as avatar. Defaulting to default profile image.": "",
|
||||
"Fluidly stream large external response chunks": "",
|
||||
"Focus chat input": "",
|
||||
"Format your variables using square brackets like this:": "",
|
||||
"From (Base Model)": "",
|
||||
|
|
|
@ -39,6 +39,7 @@
|
|||
import { RAGTemplate } from '$lib/utils/rag';
|
||||
import { LITELLM_API_BASE_URL, OLLAMA_API_BASE_URL, OPENAI_API_BASE_URL } from '$lib/constants';
|
||||
import { WEBUI_BASE_URL } from '$lib/constants';
|
||||
import { createOpenAITextStream } from '$lib/apis/streaming';
|
||||
|
||||
const i18n = getContext('i18n');
|
||||
|
||||
|
@ -599,38 +600,22 @@
|
|||
.pipeThrough(splitStream('\n'))
|
||||
.getReader();
|
||||
|
||||
while (true) {
|
||||
const { value, done } = await reader.read();
|
||||
const textStream = await createOpenAITextStream(reader, $settings.splitLargeChunks);
|
||||
console.log(textStream);
|
||||
|
||||
for await (const update of textStream) {
|
||||
const { value, done } = update;
|
||||
if (done || stopResponseFlag || _chatId !== $chatId) {
|
||||
responseMessage.done = true;
|
||||
messages = messages;
|
||||
break;
|
||||
}
|
||||
|
||||
try {
|
||||
let lines = value.split('\n');
|
||||
|
||||
for (const line of lines) {
|
||||
if (line !== '') {
|
||||
console.log(line);
|
||||
if (line === 'data: [DONE]') {
|
||||
responseMessage.done = true;
|
||||
messages = messages;
|
||||
} else {
|
||||
let data = JSON.parse(line.replace(/^data: /, ''));
|
||||
console.log(data);
|
||||
|
||||
if (responseMessage.content == '' && data.choices[0].delta.content == '\n') {
|
||||
continue;
|
||||
} else {
|
||||
responseMessage.content += data.choices[0].delta.content ?? '';
|
||||
messages = messages;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} catch (error) {
|
||||
console.log(error);
|
||||
if (responseMessage.content == '' && value == '\n') {
|
||||
continue;
|
||||
} else {
|
||||
responseMessage.content += value;
|
||||
messages = messages;
|
||||
}
|
||||
|
||||
if ($settings.notificationEnabled && !document.hasFocus()) {
|
||||
|
|
|
@ -42,6 +42,7 @@
|
|||
OLLAMA_API_BASE_URL,
|
||||
WEBUI_BASE_URL
|
||||
} from '$lib/constants';
|
||||
import { createOpenAITextStream } from '$lib/apis/streaming';
|
||||
|
||||
const i18n = getContext('i18n');
|
||||
|
||||
|
@ -611,38 +612,22 @@
|
|||
.pipeThrough(splitStream('\n'))
|
||||
.getReader();
|
||||
|
||||
while (true) {
|
||||
const { value, done } = await reader.read();
|
||||
const textStream = await createOpenAITextStream(reader, $settings.splitLargeChunks);
|
||||
console.log(textStream);
|
||||
|
||||
for await (const update of textStream) {
|
||||
const { value, done } = update;
|
||||
if (done || stopResponseFlag || _chatId !== $chatId) {
|
||||
responseMessage.done = true;
|
||||
messages = messages;
|
||||
break;
|
||||
}
|
||||
|
||||
try {
|
||||
let lines = value.split('\n');
|
||||
|
||||
for (const line of lines) {
|
||||
if (line !== '') {
|
||||
console.log(line);
|
||||
if (line === 'data: [DONE]') {
|
||||
responseMessage.done = true;
|
||||
messages = messages;
|
||||
} else {
|
||||
let data = JSON.parse(line.replace(/^data: /, ''));
|
||||
console.log(data);
|
||||
|
||||
if (responseMessage.content == '' && data.choices[0].delta.content == '\n') {
|
||||
continue;
|
||||
} else {
|
||||
responseMessage.content += data.choices[0].delta.content ?? '';
|
||||
messages = messages;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} catch (error) {
|
||||
console.log(error);
|
||||
if (responseMessage.content == '' && value == '\n') {
|
||||
continue;
|
||||
} else {
|
||||
responseMessage.content += value;
|
||||
messages = messages;
|
||||
}
|
||||
|
||||
if ($settings.notificationEnabled && !document.hasFocus()) {
|
||||
|
|
Loading…
Reference in a new issue