forked from open-webui/open-webui
choose embedding model when using docker
This commit is contained in:
parent
4c3edd0375
commit
1846c1e80d
3 changed files with 46 additions and 20 deletions
|
@ -1,6 +1,5 @@
|
|||
from fastapi import (
|
||||
FastAPI,
|
||||
Request,
|
||||
Depends,
|
||||
HTTPException,
|
||||
status,
|
||||
|
@ -12,7 +11,7 @@ from fastapi.middleware.cors import CORSMiddleware
|
|||
import os, shutil
|
||||
from typing import List
|
||||
|
||||
# from chromadb.utils import embedding_functions
|
||||
from chromadb.utils import embedding_functions
|
||||
|
||||
from langchain_community.document_loaders import (
|
||||
WebBaseLoader,
|
||||
|
@ -28,24 +27,19 @@ from langchain_community.document_loaders import (
|
|||
UnstructuredExcelLoader,
|
||||
)
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain_community.vectorstores import Chroma
|
||||
from langchain.chains import RetrievalQA
|
||||
|
||||
|
||||
from pydantic import BaseModel
|
||||
from typing import Optional
|
||||
|
||||
import uuid
|
||||
import time
|
||||
|
||||
from utils.misc import calculate_sha256, calculate_sha256_string
|
||||
from utils.utils import get_current_user, get_admin_user
|
||||
from config import UPLOAD_DIR, EMBED_MODEL, CHROMA_CLIENT, CHUNK_SIZE, CHUNK_OVERLAP
|
||||
from config import UPLOAD_DIR, SENTENCE_TRANSFORMER_EMBED_MODEL, CHROMA_CLIENT, CHUNK_SIZE, CHUNK_OVERLAP
|
||||
from constants import ERROR_MESSAGES
|
||||
|
||||
# EMBEDDING_FUNC = embedding_functions.SentenceTransformerEmbeddingFunction(
|
||||
# model_name=EMBED_MODEL
|
||||
# )
|
||||
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=SENTENCE_TRANSFORMER_EMBED_MODEL)
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
|
@ -78,11 +72,17 @@ def store_data_in_vector_db(data, collection_name) -> bool:
|
|||
metadatas = [doc.metadata for doc in docs]
|
||||
|
||||
try:
|
||||
collection = CHROMA_CLIENT.create_collection(name=collection_name)
|
||||
if 'DOCKER_SENTENCE_TRANSFORMER_EMBED_MODEL' in os.environ:
|
||||
# if you use docker use the model from the environment variable
|
||||
collection = CHROMA_CLIENT.create_collection(name=collection_name, embedding_function=sentence_transformer_ef)
|
||||
|
||||
else:
|
||||
# for local development use the default model
|
||||
collection = CHROMA_CLIENT.create_collection(name=collection_name)
|
||||
|
||||
collection.add(
|
||||
documents=texts, metadatas=metadatas, ids=[str(uuid.uuid1()) for _ in texts]
|
||||
)
|
||||
documents=texts, metadatas=metadatas, ids=[str(uuid.uuid1()) for _ in texts]
|
||||
)
|
||||
return True
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
@ -109,9 +109,17 @@ def query_doc(
|
|||
user=Depends(get_current_user),
|
||||
):
|
||||
try:
|
||||
collection = CHROMA_CLIENT.get_collection(
|
||||
name=form_data.collection_name,
|
||||
)
|
||||
if 'DOCKER_SENTENCE_TRANSFORMER_EMBED_MODEL' in os.environ:
|
||||
# if you use docker use the model from the environment variable
|
||||
collection = CHROMA_CLIENT.get_collection(
|
||||
name=form_data.collection_name,
|
||||
embedding_function=sentence_transformer_ef
|
||||
)
|
||||
else:
|
||||
# for local development use the default model
|
||||
collection = CHROMA_CLIENT.get_collection(
|
||||
name=form_data.collection_name,
|
||||
)
|
||||
result = collection.query(query_texts=[form_data.query], n_results=form_data.k)
|
||||
return result
|
||||
except Exception as e:
|
||||
|
@ -182,9 +190,18 @@ def query_collection(
|
|||
|
||||
for collection_name in form_data.collection_names:
|
||||
try:
|
||||
collection = CHROMA_CLIENT.get_collection(
|
||||
name=collection_name,
|
||||
if 'DOCKER_SENTENCE_TRANSFORMER_EMBED_MODEL' in os.environ:
|
||||
# if you use docker use the model from the environment variable
|
||||
collection = CHROMA_CLIENT.get_collection(
|
||||
name=form_data.collection_name,
|
||||
embedding_function=sentence_transformer_ef
|
||||
)
|
||||
else:
|
||||
# for local development use the default model
|
||||
collection = CHROMA_CLIENT.get_collection(
|
||||
name=form_data.collection_name,
|
||||
)
|
||||
|
||||
result = collection.query(
|
||||
query_texts=[form_data.query], n_results=form_data.k
|
||||
)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue