# Conflicts: # config/measure.py # results/compression_results_auto_small.csv |
||
|---|---|---|
| .. | ||
| autoencoder | ||
| cnn | ||
| README.md | ||
Meta information about training
The trained models that are saved here follow the following naming convention:
- Optuna intermediate model:
[model]-[dataset]-[context].pt - Fully trained model:
[model]-[dataset]-full-[context].pt
The following parameters were used:
- training size: 2048 for optuna, 209715 for full training
- context sizes: {128, 256}
The models were trained with the following command:
uv run python ./results/[cnn,autoencoder] train --method [full,optuna] \
--data-root ./data --dataset [genome,enwik9] --context [128,256] --size [2048,209715] \
--model-save-path ./models/<name> --model-load-path <path if full trainig, output from optuna>