This repository has been archived on 2025-12-23. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
2025ML-project-neural_compr.../main.py

109 lines
3.7 KiB
Python

from argparse import ArgumentParser
from math import ceil
import torch
from torch.utils.data import DataLoader
from dataset_loaders import dataset_called
from trainers import OptunaTrainer, Trainer, FullTrainer
def parse_arguments():
parser = ArgumentParser(prog="NeuralCompression")
parser.add_argument("--debug", "-d", action="store_true", required=False,
help="Enable debug mode: smaller datasets, more information")
parser.add_argument("--verbose", "-v", action="store_true", required=False,
help="Enable verbose mode")
dataparser = ArgumentParser(add_help=False)
dataparser.add_argument("--data-root", type=str, required=False)
dataparser.add_argument("--dataset", choices=dataset_called.keys(), required=True)
modelparser = ArgumentParser(add_help=False)
modelparser.add_argument("--model-path", type=str, required=False,
help="Path to the model to load/save")
fileparser = ArgumentParser(add_help=False)
fileparser.add_argument("--input-file", "-i", required=False, type=str)
fileparser.add_argument("--output-file", "-o", required=False, type=str)
subparsers = parser.add_subparsers(dest="mode", required=True,
help="Mode to run in")
# TODO
fetch_parser = subparsers.add_parser("fetch", parents=[dataparser],
help="Only fetch the dataset, then exit")
train_parser = subparsers.add_parser("train", parents=[dataparser, modelparser])
train_parser.add_argument("--method", choices=["optuna", "full"], required=True,
help="Method to use for training")
# TODO
compress_parser = subparsers.add_parser("compress", parents=[modelparser, fileparser])
# TODO
decompress_parser = subparsers.add_parser("decompress", parents=[modelparser, fileparser])
return parser.parse_args()
def main():
BATCH_SIZE = 2
# hyper parameters
context_length = 128
args = parse_arguments()
if torch.accelerator.is_available():
DEVICE = torch.accelerator.current_accelerator().type
else:
DEVICE = "cpu"
print(f"Running on device: {DEVICE}...")
dataset_common_args = {
'root': args.data_root,
'transform': lambda x: x.to(DEVICE)
}
if args.debug:
dataset_common_args['size'] = 2**10
print("Loading in the dataset...")
if args.dataset in dataset_called:
training_set = dataset_called[args.dataset](split='train', **dataset_common_args)
validate_set = dataset_called[args.dataset](split='validation', **dataset_common_args)
else:
# TODO Allow to import arbitrary files
raise NotImplementedError(f"Importing external datasets is not implemented yet")
if args.mode == 'fetch':
# TODO More to earlier in chain, because now everything is converted into tensors as well?
exit(0)
print(f"Training set size = {len(training_set)}, Validation set size {len(validate_set)}")
training_loader = DataLoader(training_set, batch_size=BATCH_SIZE, shuffle=True)
validation_loader = DataLoader(validate_set, batch_size=BATCH_SIZE, shuffle=False)
loss_fn = torch.nn.CrossEntropyLoss()
model = None
if args.model_path is not None:
print("Loading the models...")
model = torch.load(args.model_path)
trainer: Trainer = OptunaTrainer(n_trials=3 if args.debug else None) if args.method == "optuna" else FullTrainer()
print("Training")
trainer.execute(
model=model,
train_loader=training_loader,
validation_loader=validation_loader,
loss_fn=loss_fn,
n_epochs=200,
device=DEVICE
)
if __name__ == "__main__":
main()