This repository has been archived on 2025-12-23. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
2025ML-project-neural_compr.../CNN-model/main_cnn.py
2025-11-25 20:20:08 +01:00

55 lines
1.8 KiB
Python

from argparse import ArgumentParser
from math import ceil
import torch
from torch.utils.data import DataLoader, TensorDataset
from datasets import EnWik9DataSet, LoremIpsumDataset
from trainers import OptunaTrainer, Trainer
BATCH_SIZE = 64
DEVICE = torch.accelerator.current_accelerator().type if torch.accelerator.is_available() else "cpu"
# hyper parameters
context_length = 128
if __name__ == "__main__":
print(f"Running on device: {DEVICE}...")
parser = ArgumentParser()
parser.add_argument("--method", choices=["optuna", "train"], required=True)
parser.add_argument("--model-path", type=str, required=False)
args = parser.parse_args()
if args.method == "train":
dataset = EnWik9DataSet()
elif args.method == "optuna":
dataset = LoremIpsumDataset()
else:
raise ValueError(f"Unknown method: {args.method}")
dataset_length = len(dataset)
training_size = ceil(0.8 * dataset_length)
print(f"training set size = {training_size}, validation set size {dataset_length - training_size}")
data = dataset.data["text"]
train_set, validate_set = torch.utils.data.random_split(TensorDataset(data),
[training_size, dataset_length - training_size])
training_loader = DataLoader(train_set, batch_size=BATCH_SIZE, shuffle=True)
validation_loader = DataLoader(validate_set, batch_size=BATCH_SIZE, shuffle=False)
loss_fn = torch.nn.CrossEntropyLoss()
model = None
if args.model_path is not None:
model = torch.load(args.model_path)
trainer: Trainer = OptunaTrainer() if args.method == "optuna" else None
trainer.execute(
model=model,
train_loader=training_loader,
validation_loader=validation_loader,
loss_fn=loss_fn,
n_epochs=200,
device=DEVICE
)