This repository has been archived on 2025-12-23. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
2025ML-project-neural_compr.../results/make_graphs.py

476 lines
15 KiB
Python

import os
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib.figure import Figure
ALGORITHM_COL = 'compressor'
LABEL_COL = 'label'
CONTEXT_COL = 'context_size'
INPUT_SIZE_COL = 'input_size'
OUTPUT_SIZE_COL = 'compressed_size'
COMPRESS_TIME_COL = 'compression_time'
DECOMPRESS_TIME_COL = 'decompression_time'
RATE_COL = 'compression_ratio'
DISTORTION_COL = 'mse_loss'
def original_v_compressed_filesize(df: pd.DataFrame,
unique_labels: list[str], palette_dict, markers_dict
) -> Figure:
"""The "rate" graph"""
plt.figure()
break_point = 0.1
_, ax_small, ax_large = split_graph(df, INPUT_SIZE_COL, 'Input size (MB)',
OUTPUT_SIZE_COL, 'Compressed size (log, MB)',
break_point, 'Compressor', 'upper left', LABEL_COL,
unique_labels, palette_dict, markers_dict)
# Add Baseline (y=x)
df_small, df_large = df[df[INPUT_SIZE_COL] < break_point], df[df[INPUT_SIZE_COL] > break_point]
baseline_label = 'Compression ratio 1.0'
baseline_alpha = 0.5
min_xy, max_xy = df_small[INPUT_SIZE_COL].min(), df_small[INPUT_SIZE_COL].max()
ax_small.plot([min_xy, max_xy], [min_xy, max_xy],
color='gray', linestyle='--', label=baseline_label, alpha=baseline_alpha)
min_xy, max_xy = df_large[INPUT_SIZE_COL].min(), df_large[INPUT_SIZE_COL].max()
ax_large.plot([min_xy, max_xy], [min_xy, max_xy],
color='gray', linestyle='--', label=baseline_label, alpha=baseline_alpha)
plt.yscale('log')
return plt.gcf()
def compression_ratios(df: pd.DataFrame, unique_labels, palette_dict) -> Figure:
"""The "rate" graph"""
plt.figure()
fig, ax = plt.subplots()
sns.boxplot(
data=df,
x=RATE_COL,
y=LABEL_COL,
hue=LABEL_COL,
hue_order=unique_labels,
palette=palette_dict,
ax=ax,
fill=False
)
ax.set_xlabel('Compression ratio')
ax.set_ylabel('Compressor')
plt.yticks(rotation=45, ha="right")
ax.grid(True)
return plt.gcf()
def filesize_v_compression_time(df: pd.DataFrame,
unique_labels: list[str], palette_dict, markers_dict
) -> Figure:
"""The "execution time" graph"""
plt.figure()
f, _, _ = split_graph(df, INPUT_SIZE_COL, 'Input size (MB)',
COMPRESS_TIME_COL, 'Runtime (log, s)',
0.1, 'Compressor', 'center left', LABEL_COL,
unique_labels, palette_dict, markers_dict)
f.text(0.5, 1, 'Compression runtime for different filesizes using each compressor', va='center', ha='center')
plt.yscale('log')
return plt.gcf()
def filesize_v_decompression_time(df: pd.DataFrame,
unique_labels: list[str], palette_dict, markers_dict
) -> Figure:
"""The "execution time" graph"""
plt.figure()
f, _, _ = split_graph(df, INPUT_SIZE_COL, 'Input size (MB)',
DECOMPRESS_TIME_COL, 'Runtime (log, s)',
0.1, 'Compressor', 'center left', LABEL_COL,
unique_labels, palette_dict, markers_dict)
f.text(0.5, 1, 'Decompression runtime for different filesizes using each compressor', va='center', ha='center')
plt.yscale('log')
return plt.gcf()
def filesize_v_mse(df: pd.DataFrame) -> Figure:
"""The "distortion" graph"""
plt.figure()
df = df[df[DISTORTION_COL] != 0]
df = df[df[ALGORITHM_COL] == 'Autoencoder']
df.sort_values(by=INPUT_SIZE_COL, inplace=True)
def filename_and_size(row):
filename = row['input_filename']
size = row[INPUT_SIZE_COL]
return f"{filename} ({size:.4f} MB)"
df['input_filename_size'] = df.apply(filename_and_size, axis=1)
fig, ax = plt.subplots()
sns.barplot(
data=df,
y='input_filename',
x=DISTORTION_COL,
hue=CONTEXT_COL,
ax=ax,
palette='Set2'
)
plt.title('MSE for autoencoder')
plt.xlabel('MSE')
plt.ylabel('Filename')
plt.yticks(rotation=45, ha="right")
plt.legend(title='Context size')
plt.grid(True)
return plt.gcf()
def mse_losses(df: pd.DataFrame, unique_labels, palette_dict) -> Figure:
"""The "distortion" graph"""
plt.figure()
fig, ax = plt.subplots()
sns.boxplot(
data=df,
x=DISTORTION_COL,
y=LABEL_COL,
hue=LABEL_COL,
hue_order=unique_labels,
palette=palette_dict,
ax=ax,
fill=False
)
ax.set_xlabel('MSE')
ax.set_ylabel('Compressor')
plt.yticks(rotation=45, ha="right")
ax.grid(True)
return plt.gcf()
def split_graph(
df, x, x_axis_label, y, y_axis_label,
break_point, legend_title, legend_loc, hue, unique_labels, palette_dict, markers_dict
) -> tuple:
df = df.sort_values(by=x)
f, (ax_left, ax_right) = plt.subplots(1, 2, sharey=True, figsize=(8, 4))
df_left = df[df[x] < break_point]
sns.scatterplot(
data=df_left,
x=x,
y=y,
ax=ax_left,
hue=hue,
hue_order=unique_labels,
palette=palette_dict,
style=hue,
style_order=unique_labels,
markers=markers_dict,
# s=150
)
ax_left.set_xlabel('')
df_right = df[df[x] > break_point]
sns.scatterplot(
data=df_right,
x=x,
y=y,
ax=ax_right,
hue=hue,
hue_order=unique_labels,
palette=palette_dict,
style=hue,
style_order=unique_labels,
markers=markers_dict,
# s=150
)
ax_right.set_xlabel('')
ax_right.set_ylabel('')
# Combine both plots into one
ax_left.spines['right'].set_visible(False)
ax_right.spines['left'].set_visible(False)
ax_right.yaxis.tick_right()
ax_right.tick_params(labelright=False)
ax_right.yaxis.set_ticks_position('none')
# Add diagonal slash lines to indicate the break (with help from Gemini)
d = .015 # proportion of vertical to horizontal extent of the slanted line
kwargs = dict(transform=ax_left.transAxes, color='k', clip_on=False)
ax_left.plot((1 - d, 1 + d), (-d, +d), **kwargs) # Top-right diagonal
ax_left.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) # Bottom-right diagonal
kwargs.update(transform=ax_right.transAxes) # Switch to the other axes
ax_right.plot((-d, +d), (1 - d, 1 + d), **kwargs) # Top-left diagonal
ax_right.plot((-d, +d), (-d, +d), **kwargs) # Bottom-left diagonal
# Fix legends
handles_left, labels_left = ax_left.get_legend_handles_labels()
handles_right, labels_right = ax_right.get_legend_handles_labels()
unique_legend = dict(zip(labels_left + labels_right, handles_left + handles_right))
ax_left.get_legend().remove()
ax_right.get_legend().remove()
ax_left.legend(unique_legend.values(), unique_legend.keys(), title=legend_title, loc=legend_loc)
f.text(0.5, 0, x_axis_label, ha='center', va='center')
ax_left.set_ylabel(y_axis_label)
ax_left.grid(True)
ax_right.grid(True)
plt.tight_layout()
return f, ax_left, ax_right
def generate(
df: pd.DataFrame, unique_labels, palette_dict, markers_dict,
tgt_dir: str, dpi: int = 300
) -> None:
"""Generate all the plots"""
# Make plots
original_v_compressed_filesize(df, unique_labels, palette_dict, markers_dict).savefig(
os.path.join(tgt_dir, 'original_v_compressed_filesize.png'),
bbox_inches='tight',
)
filesize_v_compression_time(df, unique_labels, palette_dict, markers_dict).savefig(
os.path.join(tgt_dir, 'filesize_v_compression_time.png'),
bbox_inches='tight',
)
filesize_v_decompression_time(df, unique_labels, palette_dict, markers_dict).savefig(
os.path.join(tgt_dir, 'filesize_v_decompression_time.png'),
bbox_inches='tight',
)
compression_ratios(df, unique_labels, palette_dict).savefig(
os.path.join(tgt_dir, 'compression_ratios.png'),
bbox_inches='tight'
)
filesize_v_mse(df).savefig(
os.path.join(tgt_dir, 'filesize_mse.png'),
bbox_inches='tight'
)
mse_losses(df, unique_labels, palette_dict).savefig(
os.path.join(tgt_dir, 'mse_losses.png'),
bbox_inches='tight'
)
def setup(tgt_dir):
# Create the targ directory if it does not exist
os.makedirs(tgt_dir, exist_ok=True)
# Prepare matplotlib for use with LaTeX (makes it look less out of place, less Pythonesque)
params = {'text.usetex': True,
'font.size': 11,
'font.family': 'serif',
'figure.dpi': 300,
}
plt.rcParams.update(params)
def preprocessing(df: pd.DataFrame) -> tuple:
# Convert byts to MB
df[INPUT_SIZE_COL] /= 1e6
df[OUTPUT_SIZE_COL] /= 1e6
# Convert ns to s
df[COMPRESS_TIME_COL] /= 1e9
# Add labels to differentiate between algorithms with context lengths
def create_label(row):
compressor = row[ALGORITHM_COL]
return compressor if pd.isna(row[CONTEXT_COL]) else f"{compressor} ($L = {int(row[CONTEXT_COL])}$)"
df[LABEL_COL] = df.apply(create_label, axis=1)
# Add the compression ratio
df[RATE_COL] = df[INPUT_SIZE_COL] / df[OUTPUT_SIZE_COL]
# Identify all categories upfront
unique_labels = sorted(df[LABEL_COL].unique())
n_labels = len(unique_labels)
# Create fixed palette and marker mapping
palette_dict = dict(zip(unique_labels, sns.color_palette("Set2", n_labels)))
markers_dict = dict(zip(unique_labels, ['o', '^', 'v', 's', 'D', 'H', 'X']))
return df, unique_labels, palette_dict, markers_dict
def main():
"""Load the data and generate the plots."""
df = pd.read_csv("measurements.csv")
tgt_dir = "figures"
setup(tgt_dir)
generate(*preprocessing(df), tgt_dir=tgt_dir, dpi=150)
def old_results():
# read in the csv
df = pd.read_csv("compression_results.csv")
# Make compatible with new code
df[INPUT_SIZE_COL] = df['original_file_size']
df[OUTPUT_SIZE_COL] = df['compressed_file_size']
df['compressor'] = df['model_type']
df[CONTEXT_COL] = df['context_length']
#
df, unique_labels, palette_dict, markers_dict = preprocessing(df)
for dataset_type in df["dataset_type"].unique():
for model_type in df["model_type"].unique():
dataset_df = df[df["dataset_type"] == dataset_type]
model_df = dataset_df[dataset_df["model_type"] == model_type].copy()
# execution time
plt.figure(figsize=(4, 3))
model_df["original_file_size_mb"] = model_df["original_file_size"] / 1e6
model_df["compression_time_s"] = model_df["compression_time"] / 1e9
model_df["decompression_time_s"] = model_df["decompression_time"] / 1e9
# compression
sns.lineplot(
data=model_df,
x="original_file_size_mb",
y="compression_time_s",
hue="context_length",
palette="Set2",
markers=True,
legend="brief",
linestyle="-"
)
# decompression
sns.lineplot(
data=model_df,
x="original_file_size_mb",
y="decompression_time_s",
hue="context_length",
palette="Set2",
markers=True,
legend=False,
linestyle="--"
)
# plt.title(f"{model_type.capitalize()} compression and decompression time: {dataset_type}")
plt.xlabel("File size (MB)")
plt.ylabel("Time (log, s)")
plt.yscale("log")
plt.legend(
[f"{style}, {c_type}" for style, c_type in zip(["Solid", "Dashed"], ["compression", "decompression"])])
plt.tight_layout()
plt.savefig(f"./graphs/{model_type}_{dataset_type}_execution_time.png")
# compression ratio
plt.figure(figsize=(4, 3))
c256 = model_df[model_df["context_length"] == 256]
c128 = model_df[model_df["context_length"] == 128]
plt.plot(c256["original_file_size"] / 1e6, c256["compressed_file_size"] / 1e6, label="256")
plt.plot(c128["original_file_size"] / 1e6, c128["compressed_file_size"] / 1e6, label="128")
# plt.title(f"{model_type.capitalize()} compressed file evolution: {dataset_type}")
plt.xlabel("Original file size (MB)")
plt.ylabel("Compressed file size (MB)")
plt.ylim(0, model_df["compressed_file_size"].max() / 1e6)
plt.legend(title="Context size")
plt.tight_layout()
plt.savefig(f"./graphs/{model_type}_{dataset_type}_compression_ratio.png")
if model_type == "cnn":
plt.figure()
for length, linestyle in [(128, '-'), (256, '--')]:
# extrapolate execution time to larger files
x = model_df[model_df["context_length"] == length]["original_file_size"] / 1e6
y = model_df[model_df["context_length"] == length]["compression_time"]
y_decom = model_df[model_df["context_length"] == length]["decompression_time"]
b1, loga1 = np.polyfit(x, np.log(y), 1)
b2, loga2 = np.polyfit(x, np.log(y_decom), 1)
x_comp = np.linspace(0, 40, 1000)
x_decomp = np.linspace(0, 40, 1000)
a1 = np.exp(loga1)
a2 = np.exp(loga2)
plt.plot(
x_comp, a1 * np.exp(x_comp),
label=f"{length} compression",
linestyle=linestyle
)
plt.plot(
x_decomp, a2 * np.exp(x_decomp),
label=f"{length} decompression",
linestyle=linestyle
)
plt.grid(True)
plt.legend()
plt.title(f"(Log-linear) Extrapolated execution time for CNN")
# plt.xscale('log')
plt.xlabel("File size (MB)")
plt.yscale('log')
plt.ylabel("Time (log, s)")
plt.tight_layout()
plt.savefig(f"./graphs/{model_type}_{dataset_type}_extrapolated_execution_time.png")
for model_type in df["model_type"].unique():
model_df = df[df["model_type"] == model_type]
plt.figure(figsize=(10, 4))
bar_height = 0.25
files = model_df["input_file_name"].unique()
y = np.arange(len(files))
c256 = model_df[model_df["context_length"] == 256]
c128 = model_df[model_df["context_length"] == 128]
plt.barh(
y - bar_height / 2,
c256["mse_loss"],
height=bar_height,
label="256",
)
plt.barh(
y + bar_height / 2,
c128["mse_loss"],
height=bar_height,
label="128",
)
plt.yticks(y, files, rotation=45, ha="right")
plt.title(f"MSE loss for different context lengths")
plt.xlabel("MSE loss")
plt.ylabel("Filename")
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.savefig(f"./graphs/{model_type}_loss.png")
if __name__ == "__main__":
main()
old_results()