This repository has been archived on 2025-12-23. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
2025ML-project-neural_compr.../CNN-model/main_cnn.py
2025-11-08 20:55:05 +01:00

93 lines
No EOL
3.2 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
import optuna.trial as tr
from torch.utils.data import DataLoader
from tqdm import tqdm
import argparse
from optuna_trial import create_model
from utils import make_context_pairs, load_data
import optuna
# hyper parameters
context_length = 128
def train_and_eval(
model: nn.Module,
training_data: bytes,
validation_data: bytes,
batch_size: int,
epochs: int = 100,
learning_rate: float = 1e-3,
device: torch.device = torch.device("cpu")
) -> dict:
model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
training_loader = DataLoader(make_context_pairs(training_data, context_length=context_length), batch_size=batch_size)
validation_loader= DataLoader(make_context_pairs(validation_data, context_length=context_length), batch_size=batch_size)
training_losses = []
validation_losses = []
best_val_loss = float("inf")
for epoch in range(epochs):
model.train()
train_loss = 0
for x, y in tqdm(training_loader, desc=f"Epoch {epoch}"):
x, y = x.to(device), y.to(device)
prediction = model(x)
loss = F.cross_entropy(prediction, y)
train_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
training_losses.append(train_loss / len(training_loader))
model.eval()
with torch.no_grad():
val_loss = 0
for x, y in validation_loader:
x, y = x.to(device), y.to(device)
prediction = model(x)
loss = F.cross_entropy(prediction, y)
val_loss += loss.item()
validation_losses.append(val_loss / len(validation_loader))
if validation_losses[-1] < best_val_loss:
best_val_loss = validation_losses[-1]
return {
"training_losses": training_losses,
"validation_losses": validation_losses,
"best_validation_loss": best_val_loss
}
def objective_function(trial: tr.Trial, train_data: bytes, validation_data: bytes, batch_size: int):
model = create_model(trial)
result = train_and_eval(model, train_data, validation_data, batch_size)
return result["best_validation_loss"]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--train-data", type=str, required=True)
parser.add_argument("--validation-data", type=str, required=True)
parser.add_argument("--batch-size", type=int, default=128)
args = parser.parse_args()
print(args)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
train_data = load_data(args.train_data)
validation_data = load_data(args.validation_data)
batch_size = args.batch_size
print(f"training data length: {len(train_data)}")
print(f"validation data length: {len(validation_data)}")
print(f"batch size: {batch_size}")
study = optuna.create_study(study_name="CNN network",direction="minimize")
study.optimize(lambda trial: objective_function(trial, train_data, validation_data, batch_size), n_trials=10)