This repository has been archived on 2025-12-23. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
2025ML-project-neural_compr.../CNN-model/cnn.py
2025-11-08 20:55:05 +01:00

45 lines
1.6 KiB
Python

import torch
import torch.nn as nn
from torch import Tensor
from torch.nn.functional import softmax
class CausalConv1d(nn.Conv1d):
def __init__(self, input_channels, output_channels, kernel_size, **kwargs):
super().__init__(input_channels, output_channels, kernel_size, padding=kernel_size-1, **kwargs)
def forward(self, input: Tensor) -> Tensor:
return super().forward(input)
class CNNPredictor(nn.Module):
def __init__(
self,
vocab_size=256,
num_layers=3,
hidden_dim=128,
kernel_size=3,
dropout_prob=0.1,
use_batchnorm=False
):
super().__init__()
self.embedding = nn.Embedding(vocab_size, hidden_dim)
layers = []
in_channels = hidden_dim
for _ in range(num_layers):
out_channels = hidden_dim
layers.append(CausalConv1d(in_channels, out_channels, kernel_size))
if use_batchnorm:
layers.append(nn.BatchNorm1d(out_channels))
layers.append(nn.ReLU())
layers.append(nn.Dropout(dropout_prob))
in_channels = out_channels
self.network = nn.Sequential(*layers)
self.output_layer = nn.Linear(hidden_dim, vocab_size)
def forward(self, x: torch.Tensor) -> torch.Tensor:
emdedding = self.embedding(x) # B, L, H
emdedding = emdedding.transpose(1, 2) # B, H, L
prediction = self.network(emdedding)
last_prediction = prediction[:, :, -1]
return softmax(self.output_layer(last_prediction), dim=-1) # convert output of linear layer to prob. distr.