This repository has been archived on 2025-12-23. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
2025ML-project-neural_compr.../transformer-xl/tf/scripts/wt103_large_tpu.sh

134 lines
3.5 KiB
Bash

#!/bin/bash
# Path
LOCAL_DIR=../data/wikitext-103/
GSDATA=
GSEXP=
# TPU setting
NUM_HOST=4
NUM_CORE=16 # TPUv2 -> 8 | TPUv3 -> 16
TEST_NUM_HOST=1
TEST_NUM_CORE=8 # TPUv2 -> 8 | TPUv3 -> 16
# Model
DIV_VAL=4
N_LAYER=18
D_MODEL=1024
D_EMBED=1024
N_HEAD=16
D_HEAD=64
D_INNER=4096
# Training
TGT_LEN=384
MEM_LEN=384
TRAIN_BSZ=128
VALID_BSZ=128
# Testing
TEST_TGT_LEN=128
TEST_MEM_LEN=1600
TEST_CLAMP_LEN=1000
TEST_BSZ=8
if [[ $1 == 'train_data' ]]; then
python data_utils.py \
--data_dir=${LOCAL_DIR}/ \
--dataset=wt103 \
--tgt_len=${TGT_LEN} \
--per_host_train_bsz=${TRAIN_BSZ} \
--per_host_valid_bsz=${VALID_BSZ} \
--num_core_per_host=${NUM_CORE} \
--num_passes=10 \
--use_tpu=True \
${@:2}
SRC_PATTERN=train.bsz-${TRAIN_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}*
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/wt103-tfrecords/
SRC_PATTERN=valid.bsz-${VALID_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}*
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/wt103-tfrecords/
elif [[ $1 == 'test_data' ]]; then
python data_utils.py \
--data_dir=${LOCAL_DIR}/ \
--dataset=wt103 \
--tgt_len=${TEST_TGT_LEN} \
--per_host_test_bsz=${TEST_BSZ} \
--num_core_per_host=${TEST_NUM_CORE} \
--num_passes=1 \
--use_tpu=True \
${@:2}
SRC_PATTERN=test.bsz-${TEST_BSZ}.tlen-${TEST_TGT_LEN}.core-${TEST_NUM_CORE}*
gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/wt103-tfrecords/
elif [[ $1 == 'train' ]]; then
echo 'Run training...'
python train.py \
--data_dir=${GSDATA}/wt103-tfrecords \
--record_info_dir=${LOCAL_DIR}/tfrecords/ \
--corpus_info_path=${LOCAL_DIR}/corpus-info.json \
--model_dir=${GSEXP}/wt103 \
--div_val=${DIV_VAL} \
--untie_r=True \
--proj_share_all_but_first=True \
--proj_same_dim=True \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--dropout=0.2 \
--dropatt=0.2 \
--init_std=0.005 \
--learning_rate=0.00025 \
--warmup_steps=16000 \
--train_steps=4000000 \
--tgt_len=${TGT_LEN} \
--mem_len=${MEM_LEN} \
--train_batch_size=${TRAIN_BSZ} \
--num_hosts=${NUM_HOST} \
--num_core_per_host=${NUM_CORE} \
--iterations=1000 \
--save_steps=10000 \
--use_tpu=True \
--do_eval=False \
${@:2}
elif [[ $1 == 'eval' ]]; then
echo 'Run evaluation...'
python train.py \
--data_dir=${GSDATA}/wt103-tfrecords \
--record_info_dir=${LOCAL_DIR}/tfrecords/ \
--corpus_info_path=${LOCAL_DIR}/corpus-info.json \
--model_dir=${GSEXP}/wt103 \
--div_val=${DIV_VAL} \
--untie_r=True \
--proj_share_all_but_first=True \
--proj_same_dim=True \
--n_layer=${N_LAYER} \
--d_model=${D_MODEL} \
--d_embed=${D_EMBED} \
--n_head=${N_HEAD} \
--d_head=${D_HEAD} \
--d_inner=${D_INNER} \
--tgt_len=${TEST_TGT_LEN} \
--mem_len=${TEST_MEM_LEN} \
--clamp_len=${TEST_CLAMP_LEN} \
--same_length=True \
--eval_batch_size=${TEST_BSZ} \
--num_host=${TEST_NUM_HOST} \
--num_core_per_host=${TEST_NUM_CORE} \
--use_tpu=True \
--do_train=False \
--do_eval_only=True \
--eval_split=test \
${@:2}
else
echo 'unknown argment 1'
fi