This repository has been archived on 2025-12-23. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
2025ML-project-neural_compr.../integer_discrete_flows/optimization/training.py
2025-11-07 12:54:36 +01:00

174 lines
5.8 KiB
Python

from __future__ import print_function
import torch
from optimization.loss import calculate_loss
from utils.visual_evaluation import plot_reconstructions
import numpy as np
def train(epoch, train_loader, model, opt, args):
model.train()
train_loss = np.zeros(len(train_loader))
train_bpd = np.zeros(len(train_loader))
num_data = 0
for batch_idx, (data, _) in enumerate(train_loader):
data = data.view(-1, *args.input_size)
data = data.to(args.device)
opt.zero_grad()
loss, bpd, bpd_per_prior, pz, z, pys, py, ldj = model(data)
loss = torch.mean(loss)
bpd = torch.mean(bpd)
bpd_per_prior = [torch.mean(i) for i in bpd_per_prior]
loss.backward()
loss = loss.item()
train_loss[batch_idx] = loss
train_bpd[batch_idx] = bpd
ldj = torch.mean(ldj).item() / np.prod(args.input_size) / np.log(2)
opt.step()
num_data += len(data)
if batch_idx % args.log_interval == 0:
perc = 100. * batch_idx / len(train_loader)
tmp = 'Epoch: {:3d} [{:5d}/{:5d} ({:2.0f}%)] \tLoss: {:11.6f}\tbpd: {:8.6f}\tbits ldj: {:8.6f}'
print(tmp.format(epoch, num_data, len(train_loader.sampler), perc, loss, bpd, ldj))
print('z min: {:8.3f}, max: {:8.3f}'.format(torch.min(z).item() * 256, torch.max(z).item() * 256))
print('z bpd: {:.3f}'.format(bpd_per_prior[0]))
for i in range(1, len(bpd_per_prior)):
print('y{} bpd: {:.3f}'.format(i-1, bpd_per_prior[i]))
print('pz mu', np.mean(pz[0].data.cpu().numpy(), axis=(0, 1, 2, 3)))
print('pz logs ', np.mean(pz[1].data.cpu().numpy(), axis=(0, 1, 2, 3)))
if len(pz) == 3:
print('pz pi ', np.mean(pz[2].data.cpu().numpy(), axis=(0, 1, 2, 3)))
for i, py in enumerate(pys):
print('py{} mu '.format(i), np.mean(py[0].data.cpu().numpy(), axis=(0, 1, 2, 3)))
print('py{} logs '.format(i), np.mean(py[1].data.cpu().numpy(), axis=(0, 1, 2, 3)))
from utils.visual_evaluation import plot_images
import os
if not os.path.exists(args.snap_dir + 'training/'):
os.makedirs(args.snap_dir + 'training/')
print('====> Epoch: {:3d} Average train loss: {:.4f}, average bpd: {:.4f}'.format(
epoch, train_loss.sum() / len(train_loader), train_bpd.sum() / len(train_loader)))
return train_loss, train_bpd
def evaluate(train_loader, val_loader, model, model_sample, args, testing=False, file=None, epoch=0):
model.eval()
loss_type = 'bpd'
def analyse(data_loader, plot=False):
bpds = []
batch_idx = 0
with torch.no_grad():
for data, _ in data_loader:
batch_idx += 1
if args.cuda:
data = data.cuda()
data = data.view(-1, *args.input_size)
loss, batch_bpd, bpd_per_prior, pz, z, pys, ys, ldj = \
model(data)
loss = torch.mean(loss).item()
batch_bpd = torch.mean(batch_bpd).item()
bpds.append(batch_bpd)
bpd = np.mean(bpds)
with torch.no_grad():
if not testing and plot:
x_sample = model_sample.sample(n=100)
try:
plot_reconstructions(
x_sample, bpd, loss_type, epoch, args)
except:
print('Not plotting')
return bpd
bpd_train = analyse(train_loader)
bpd_val = analyse(val_loader, plot=True)
with open(file, 'a') as ff:
msg = 'epoch {}\ttrain bpd {:.3f}\tval bpd {:.3f}\t'.format(
epoch,
bpd_train,
bpd_val)
print(msg, file=ff)
loss = bpd_val * np.prod(args.input_size) * np.log(2.)
bpd = bpd_val
file = None
# Compute log-likelihood
with torch.no_grad():
if testing:
test_data = val_loader.dataset.data_tensor
if args.cuda:
test_data = test_data.cuda()
print('Computing log-likelihood on test set')
model.eval()
log_likelihood = analyse(test_data)
else:
log_likelihood = None
nll_bpd = None
if file is None:
if testing:
print('====> Test set loss: {:.4f}'.format(loss))
print('====> Test set log-likelihood: {:.4f}'.format(log_likelihood))
print('====> Test set bpd (elbo): {:.4f}'.format(bpd))
print('====> Test set bpd (log-likelihood): {:.4f}'.format(log_likelihood/
(np.prod(args.input_size) * np.log(2.))))
else:
print('====> Validation set loss: {:.4f}'.format(loss))
print('====> Validation set bpd: {:.4f}'.format(bpd))
else:
with open(file, 'a') as ff:
if testing:
print('====> Test set loss: {:.4f}'.format(loss), file=ff)
print('====> Test set log-likelihood: {:.4f}'.format(log_likelihood), file=ff)
print('====> Test set bpd: {:.4f}'.format(bpd), file=ff)
print('====> Test set bpd (log-likelihood): {:.4f}'.format(log_likelihood /
(np.prod(args.input_size) * np.log(2.))),
file=ff)
else:
print('====> Validation set loss: {:.4f}'.format(loss), file=ff)
print('====> Validation set bpd: {:.4f}'.format(loss / (np.prod(args.input_size) * np.log(2.))),
file=ff)
if not testing:
return loss, bpd
else:
return log_likelihood, nll_bpd