Evaluating small neural networks for general-purpose lossy data compression
This repository has been archived on 2025-12-23. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
Find a file
2025-11-30 19:27:35 +01:00
CNN-model chore: Change versions, setup HPC 2025-11-30 16:51:44 +01:00
integer_discrete_flows feat: uhm, i changed some things 2025-11-25 20:20:08 +01:00
simple chore(simple): Add directory 2025-11-07 12:58:59 +01:00
transformer-xl feat: uhm, i changed some things 2025-11-25 20:20:08 +01:00
.gitignore feat: model --> ready to test train 2025-11-08 20:55:05 +01:00
.python-version chore: Change versions, setup HPC 2025-11-30 16:51:44 +01:00
job.pbs fix: Readd matplotlib 2025-11-30 19:27:35 +01:00
pyproject.toml fix: Readd matplotlib 2025-11-30 19:27:35 +01:00
README.md chore: Change versions, setup HPC 2025-11-30 16:51:44 +01:00
uv.lock fix: Readd matplotlib 2025-11-30 19:27:35 +01:00

neural compression

Running locally

uv sync --all-extras

Running on the Ghent University HPC

See the Infrastructure docs for more information about the clusters.

module swap cluster/joltik # Specify the (GPU) cluster, {joltik,accelgor,litleo}

qsub job.pbs               # Submit job
qstat                      # Check status