""" Collection of flow strategies """ from __future__ import print_function import torch import numpy as np from models.utils import Base from .backround import BackRound from .networks import NN UNIT_TESTING = False class SplitFactorCoupling(Base): def __init__(self, c_in, factor, height, width, args): super().__init__() self.n_channels = args.n_channels self.kernel = 3 self.input_channel = c_in self.round_approx = args.round_approx if args.variable_type == 'discrete': self.round = BackRound( args, inverse_bin_width=2**args.n_bits) else: self.round = None self.split_idx = c_in - (c_in // factor) self.nn = NN( args=args, c_in=self.split_idx, c_out=c_in - self.split_idx, height=height, width=width, kernel=self.kernel, nn_type=args.coupling_type) def forward(self, z, ldj, reverse=False): z1 = z[:, :self.split_idx, :, :] z2 = z[:, self.split_idx:, :, :] t = self.nn(z1) if self.round is not None: t = self.round(t) if not reverse: z2 = z2 + t else: z2 = z2 - t z = torch.cat([z1, z2], dim=1) return z, ldj class Coupling(Base): def __init__(self, c_in, height, width, args): super().__init__() if args.split_quarter: factor = 4 elif args.splitfactor > 1: factor = args.splitfactor else: factor = 2 self.coupling = SplitFactorCoupling( c_in, factor, height, width, args=args) def forward(self, z, ldj, reverse=False): return self.coupling(z, ldj, reverse) def test_generative_flow(): import models.networks as networks global UNIT_TESTING networks.UNIT_TESTING = True UNIT_TESTING = True batch_size = 17 input_size = [12, 16, 16] class Args(): def __init__(self): self.input_size = input_size self.learn_split = False self.variable_type = 'continuous' self.distribution_type = 'logistic' self.round_approx = 'smooth' self.coupling_type = 'shallow' self.conv_type = 'standard' self.densenet_depth = 8 self.bottleneck = False self.n_channels = 512 self.network1x1 = 'standard' self.auxilary_freq = -1 self.actnorm = False self.LU = False self.coupling_lifting_L = True self.splitprior = True self.split_quarter = True self.n_levels = 2 self.n_flows = 2 self.cond_L = True self.n_bits = True args = Args() x = (torch.randint(256, size=[batch_size] + input_size).float() - 128.) / 256. ldj = torch.zeros_like(x[:, 0, 0, 0]) model = Coupling(c_in=12, height=16, width=16, args=args) print(model) model.set_temperature(1.) model.enable_hard_round() model.eval() z, ldj = model(x, ldj, reverse=False) # Check if gradient computation works loss = torch.sum(z**2) loss.backward() recon, ldj = model(z, ldj, reverse=True) sse = torch.sum(torch.pow(x - recon, 2)).item() ae = torch.abs(x - recon).sum() print('Error in recon: sse {} ae {}'.format(sse / np.prod(input_size), ae)) if __name__ == '__main__': test_generative_flow()