import tensorflow as tf def positional_embedding(pos_seq, inv_freq, bsz=None): sinusoid_inp = tf.einsum('i,j->ij', pos_seq, inv_freq) pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], -1) if bsz is not None: return tf.tile(pos_emb[:, None, :], [1, bsz, 1]) else: return pos_emb[:, None, :] def positionwise_FF(inp, d_model, d_inner, dropout, kernel_initializer, scope='ff', is_training=True): output = inp with tf.variable_scope(scope): output = tf.layers.dense(inp, d_inner, activation=tf.nn.relu, kernel_initializer=kernel_initializer, name='layer_1') output = tf.layers.dropout(output, dropout, training=is_training, name='drop_1') output = tf.layers.dense(output, d_model, kernel_initializer=kernel_initializer, name='layer_2') output = tf.layers.dropout(output, dropout, training=is_training, name='drop_2') output = tf.contrib.layers.layer_norm(output + inp, begin_norm_axis=-1) return output def rel_shift(x): x_size = tf.shape(x) x = tf.pad(x, [[0, 0], [1, 0], [0, 0], [0, 0]]) x = tf.reshape(x, [x_size[1] + 1, x_size[0], x_size[2], x_size[3]]) x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1]) x = tf.reshape(x, x_size) return x def rel_multihead_attn(w, r, r_w_bias, r_r_bias, attn_mask, mems, d_model, n_head, d_head, dropout, dropatt, is_training, kernel_initializer, scope='rel_attn'): scale = 1 / (d_head ** 0.5) with tf.variable_scope(scope): qlen = tf.shape(w)[0] rlen = tf.shape(r)[0] bsz = tf.shape(w)[1] cat = tf.concat([mems, w], 0) if mems is not None and mems.shape.ndims > 1 else w w_heads = tf.layers.dense(cat, 3 * n_head * d_head, use_bias=False, kernel_initializer=kernel_initializer, name='qkv') r_head_k = tf.layers.dense(r, n_head * d_head, use_bias=False, kernel_initializer=kernel_initializer, name='r') w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, -1) w_head_q = w_head_q[-qlen:] klen = tf.shape(w_head_k)[0] w_head_q = tf.reshape(w_head_q, [qlen, bsz, n_head, d_head]) w_head_k = tf.reshape(w_head_k, [klen, bsz, n_head, d_head]) w_head_v = tf.reshape(w_head_v, [klen, bsz, n_head, d_head]) r_head_k = tf.reshape(r_head_k, [rlen, n_head, d_head]) rw_head_q = w_head_q + r_w_bias rr_head_q = w_head_q + r_r_bias AC = tf.einsum('ibnd,jbnd->ijbn', rw_head_q, w_head_k) BD = tf.einsum('ibnd,jnd->ijbn', rr_head_q, r_head_k) BD = rel_shift(BD) attn_score = (AC + BD) * scale attn_mask_t = attn_mask[:, :, None, None] attn_score = attn_score * (1 - attn_mask_t) - 1e30 * attn_mask_t attn_prob = tf.nn.softmax(attn_score, 1) attn_prob = tf.layers.dropout(attn_prob, dropatt, training=is_training) attn_vec = tf.einsum('ijbn,jbnd->ibnd', attn_prob, w_head_v) size_t = tf.shape(attn_vec) attn_vec = tf.reshape(attn_vec, [size_t[0], size_t[1], n_head * d_head]) attn_out = tf.layers.dense(attn_vec, d_model, use_bias=False, kernel_initializer=kernel_initializer, name='o') attn_out = tf.layers.dropout(attn_out, dropout, training=is_training) output = tf.contrib.layers.layer_norm(attn_out + w, begin_norm_axis=-1) return output def embedding_lookup(lookup_table, x, use_tpu=True): if use_tpu: n_token = tf.shape(lookup_table)[0] one_hot_idx = tf.one_hot(x, n_token) if one_hot_idx.shape.ndims == 2: return tf.einsum('nd,in->id', lookup_table, one_hot_idx) else: return tf.einsum('nd,ibn->ibd', lookup_table, one_hot_idx) else: return tf.nn.embedding_lookup(lookup_table, x) def mask_adaptive_embedding_lookup(x, n_token, d_embed, d_proj, cutoffs, initializer, proj_initializer, div_val=1, proj_same_dim=True, scope='adaptive_embed', **kwargs): emb_scale = d_proj ** 0.5 with tf.variable_scope(scope): if div_val == 1: lookup_table = tf.get_variable('lookup_table', [n_token, d_embed], initializer=initializer) y = embedding_lookup(lookup_table, x, use_tpu=False) if d_proj != d_embed: proj_W = tf.get_variable('proj_W', [d_embed, d_proj], initializer=proj_initializer) y = tf.einsum('ibe,ed->ibd', y, proj_W) else: proj_W = None ret_params = [lookup_table, proj_W] else: tables, projs = [], [] cutoff_ends = [0] + cutoffs + [n_token] x_size = tf.shape(x) y = tf.zeros([x_size[0], x_size[1], d_proj]) for i in range(len(cutoff_ends) - 1): with tf.variable_scope('cutoff_{}'.format(i)): l_idx, r_idx = cutoff_ends[i], cutoff_ends[i + 1] mask = (x >= l_idx) & (x < r_idx) cur_x = tf.boolean_mask(x, mask) - l_idx cur_d_embed = d_embed // (div_val ** i) lookup_table = tf.get_variable('lookup_table', [r_idx - l_idx, cur_d_embed], initializer=initializer) cur_y = embedding_lookup(lookup_table, cur_x, use_tpu=False) if d_proj == cur_d_embed and not proj_same_dim: proj_W = None else: proj_W = tf.get_variable('proj_W', [cur_d_embed, d_proj], initializer=proj_initializer) cur_y = tf.einsum('id,de->ie', cur_y, proj_W) mask_idx = tf.to_int64(tf.where(mask)) y += tf.scatter_nd(mask_idx, cur_y, tf.to_int64(tf.shape(y))) tables.append(lookup_table) projs.append(proj_W) ret_params = [tables, projs] y *= emb_scale return y, ret_params def mul_adaptive_embedding_lookup(x, n_token, d_embed, d_proj, cutoffs, initializer, proj_initializer, div_val=1, perms=None, proj_same_dim=True, scope='adaptive_embed'): """ perms: If None, first compute W = W1 x W2 (projection for each bin), and then compute X x W (embedding lookup). If not None, use bin-based embedding lookup with max_bin_size defined by the shape of perms. """ emb_scale = d_proj ** 0.5 with tf.variable_scope(scope): if div_val == 1: lookup_table = tf.get_variable('lookup_table', [n_token, d_embed], initializer=initializer) y = embedding_lookup(lookup_table, x) if d_proj != d_embed: proj_W = tf.get_variable('proj_W', [d_embed, d_proj], initializer=proj_initializer) y = tf.einsum('ibe,ed->ibd', y, proj_W) else: proj_W = None ret_params = [lookup_table, proj_W] else: tables, projs = [], [] cutoff_ends = [0] + cutoffs + [n_token] x_size = tf.shape(x) if perms is None: cat_lookup = [] else: cat_lookup = tf.zeros([x_size[0], x_size[1], d_proj]) for i in range(len(cutoff_ends) - 1): with tf.variable_scope('cutoff_{}'.format(i)): l_idx, r_idx = cutoff_ends[i], cutoff_ends[i + 1] cur_d_embed = d_embed // (div_val ** i) lookup_table = tf.get_variable('lookup_table', [r_idx - l_idx, cur_d_embed], initializer=initializer) if cur_d_embed == d_proj and not proj_same_dim: proj_W = None else: proj_W = tf.get_variable('proj_W', [cur_d_embed, d_proj], initializer=proj_initializer) if perms is None: cat_lookup.append(tf.einsum('ie,ed->id', lookup_table, proj_W)) else: # speed up the computation of the first bin # also save some meory if i == 0: cur_y = embedding_lookup(lookup_table, tf.minimum(x, r_idx - 1)) if proj_W is not None: cur_y = tf.einsum('ibe,ed->ibd', cur_y, proj_W) cur_y *= perms[i][:, :, None] cat_lookup += cur_y else: cur_x = tf.einsum('ib,ibk->k', tf.to_float(x - l_idx), perms[i]) cur_x = tf.to_int32(cur_x) cur_y = embedding_lookup(lookup_table, cur_x) if proj_W is not None: cur_y = tf.einsum('ke,ed->kd', cur_y, proj_W) cat_lookup += tf.einsum('kd,ibk->ibd', cur_y, perms[i]) tables.append(lookup_table) projs.append(proj_W) if perms is None: cat_lookup = tf.concat(cat_lookup, 0) y = embedding_lookup(cat_lookup, x) else: y = cat_lookup ret_params = [tables, projs] y *= emb_scale return y, ret_params def mask_adaptive_logsoftmax(hidden, target, n_token, d_embed, d_proj, cutoffs, params, tie_projs, initializer=None, proj_initializer=None, div_val=1, scope='adaptive_softmax', proj_same_dim=True, return_mean=True, **kwargs): def _logit(x, W, b, proj): y = x if proj is not None: y = tf.einsum('ibd,ed->ibe', y, proj) return tf.einsum('ibd,nd->ibn', y, W) + b params_W, params_projs = params[0], params[1] def _gather_logprob(logprob, target): lp_size = tf.shape(logprob) r = tf.range(lp_size[0]) idx = tf.stack([r, target], 1) return tf.gather_nd(logprob, idx) with tf.variable_scope(scope): if len(cutoffs) == 0: softmax_b = tf.get_variable('bias', [n_token], initializer=tf.zeros_initializer()) output = _logit(hidden, params_W, softmax_b, params_projs) nll = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=output) else: cutoff_ends = [0] + cutoffs + [n_token] nll = tf.zeros_like(target, dtype=tf.float32) for i in range(len(cutoff_ends) - 1): with tf.variable_scope('cutoff_{}'.format(i)): l_idx, r_idx = cutoff_ends[i], cutoff_ends[i + 1] mask = (target >= l_idx) & (target < r_idx) mask_idx = tf.where(mask) cur_target = tf.boolean_mask(target, mask) - l_idx cur_d_embed = d_embed // (div_val ** i) if div_val == 1: cur_W = params_W[l_idx: r_idx] else: cur_W = params_W[i] cur_b = tf.get_variable('b', [r_idx - l_idx], initializer=tf.zeros_initializer()) if tie_projs[i]: if div_val == 1: cur_proj = params_projs else: cur_proj = params_projs[i] else: if (div_val == 1 or not proj_same_dim) and d_proj == cur_d_embed: cur_proj = None else: cur_proj = tf.get_variable('proj', [cur_d_embed, d_proj], initializer=proj_initializer) if i == 0: cluster_W = tf.get_variable('cluster_W', [len(cutoffs), d_embed], initializer=tf.zeros_initializer()) cluster_b = tf.get_variable('cluster_b', [len(cutoffs)], initializer=tf.zeros_initializer()) cur_W = tf.concat([cur_W, cluster_W], 0) cur_b = tf.concat([cur_b, cluster_b], 0) head_logit = _logit(hidden, cur_W, cur_b, cur_proj) head_logprob = tf.nn.log_softmax(head_logit) cur_head_logprob = tf.boolean_mask(head_logprob, mask) cur_logprob = _gather_logprob(cur_head_logprob, cur_target) else: cur_head_logprob = tf.boolean_mask(head_logprob, mask) cur_hidden = tf.boolean_mask(hidden, mask) tail_logit = tf.squeeze(_logit( cur_hidden[None], cur_W, cur_b, cur_proj), 0) tail_logprob = tf.nn.log_softmax(tail_logit) cur_logprob = (cur_head_logprob[:, cutoff_ends[1] + i - 1] + _gather_logprob(tail_logprob, cur_target)) nll += tf.scatter_nd(mask_idx, -cur_logprob, tf.to_int64(tf.shape(nll))) if return_mean: nll = tf.reduce_mean(nll) return nll def mul_adaptive_logsoftmax(hidden, target, n_token, d_embed, d_proj, cutoffs, params, tie_projs, initializer=None, proj_initializer=None, div_val=1, perms=None, proj_same_dim=True, scope='adaptive_softmax', **kwargs): def _logit(x, W, b, proj): y = x if x.shape.ndims == 3: if proj is not None: y = tf.einsum('ibd,ed->ibe', y, proj) return tf.einsum('ibd,nd->ibn', y, W) + b else: if proj is not None: y = tf.einsum('id,ed->ie', y, proj) return tf.einsum('id,nd->in', y, W) + b params_W, params_projs = params[0], params[1] with tf.variable_scope(scope): if len(cutoffs) == 0: softmax_b = tf.get_variable('bias', [n_token], initializer=tf.zeros_initializer()) output = _logit(hidden, params_W, softmax_b, params_projs) nll = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=output) nll = tf.reduce_mean(nll) else: total_loss, total_cnt = 0, 0 cutoff_ends = [0] + cutoffs + [n_token] for i in range(len(cutoff_ends) - 1): with tf.variable_scope('cutoff_{}'.format(i)): l_idx, r_idx = cutoff_ends[i], cutoff_ends[i + 1] cur_d_embed = d_embed // (div_val ** i) if div_val == 1: cur_W = params_W[l_idx: r_idx] else: cur_W = params_W[i] cur_b = tf.get_variable('b', [r_idx - l_idx], initializer=tf.zeros_initializer()) if tie_projs[i]: if div_val == 1: cur_proj = params_projs else: cur_proj = params_projs[i] else: if (div_val == 1 or not proj_same_dim) and d_proj == cur_d_embed: cur_proj = None else: cur_proj = tf.get_variable('proj', [cur_d_embed, d_proj], initializer=proj_initializer) if i == 0: cluster_W = tf.get_variable('cluster_W', [len(cutoffs), d_embed], initializer=tf.zeros_initializer()) cluster_b = tf.get_variable('cluster_b', [len(cutoffs)], initializer=tf.zeros_initializer()) cur_W = tf.concat([cur_W, cluster_W], 0) cur_b = tf.concat([cur_b, cluster_b], 0) head_logit = _logit(hidden, cur_W, cur_b, cur_proj) head_target = kwargs.get("head_target") head_nll = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=head_target, logits=head_logit) masked_loss = head_nll * perms[i] total_loss += tf.reduce_sum(masked_loss) total_cnt += tf.reduce_sum(perms[i]) # head_logprob = tf.nn.log_softmax(head_logit) # final_logprob = head_logprob * perms[i][:, :, None] # final_target = tf.one_hot(target, tf.shape(head_logprob)[2]) # total_loss -= tf.einsum('ibn,ibn->', final_logprob, final_target) # total_cnt += tf.reduce_sum(perms[i]) else: cur_head_nll = tf.einsum('ib,ibk->k', head_nll, perms[i]) cur_hidden = tf.einsum('ibd,ibk->kd', hidden, perms[i]) tail_logit = _logit(cur_hidden, cur_W, cur_b, cur_proj) tail_target = tf.einsum('ib,ibk->k', tf.to_float(target - l_idx), perms[i]) tail_nll = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=tf.to_int32(tail_target), logits=tail_logit) sum_nll = cur_head_nll + tail_nll mask = tf.reduce_sum(perms[i], [0, 1]) masked_loss = sum_nll * mask total_loss += tf.reduce_sum(masked_loss) total_cnt += tf.reduce_sum(mask) nll = total_loss / total_cnt return nll def _create_mask(qlen, mlen, same_length=False): attn_mask = tf.ones([qlen, qlen]) mask_u = tf.matrix_band_part(attn_mask, 0, -1) mask_dia = tf.matrix_band_part(attn_mask, 0, 0) attn_mask_pad = tf.zeros([qlen, mlen]) ret = tf.concat([attn_mask_pad, mask_u - mask_dia], 1) if same_length: mask_l = tf.matrix_band_part(attn_mask, -1, 0) ret = tf.concat([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1) return ret def _cache_mem(curr_out, prev_mem, mem_len=None): if mem_len is None or prev_mem is None: new_mem = curr_out elif mem_len == 0: return prev_mem else: new_mem = tf.concat([prev_mem, curr_out], 0)[- mem_len:] return tf.stop_gradient(new_mem) def transformer(dec_inp, target, mems, n_token, n_layer, d_model, d_embed, n_head, d_head, d_inner, dropout, dropatt, initializer, is_training, proj_initializer=None, mem_len=None, cutoffs=[], div_val=1, tie_projs=[], same_length=False, clamp_len=-1, use_tpu=True, input_perms=None, target_perms=None, head_target=None, untie_r=False, proj_same_dim=True, scope='transformer'): """ cutoffs: a list of python int. Cutoffs for adaptive softmax. tie_projs: a list of python bools. Whether to tie the projections. use_tpu: if True, use one_hot in embedding lookup and bin-based implementation of adaptive softmax. perms: a list of tensors. Each tensor should of size [len, bsz, bin_size]. Only used in the adaptive setting. """ new_mems = [] with tf.variable_scope(scope): if untie_r: r_w_bias = tf.get_variable('r_w_bias', [n_layer, n_head, d_head], initializer=initializer) r_r_bias = tf.get_variable('r_r_bias', [n_layer, n_head, d_head], initializer=initializer) else: r_w_bias = tf.get_variable('r_w_bias', [n_head, d_head], initializer=initializer) r_r_bias = tf.get_variable('r_r_bias', [n_head, d_head], initializer=initializer) qlen = tf.shape(dec_inp)[0] mlen = tf.shape(mems[0])[0] if mems is not None else 0 klen = mlen + qlen if proj_initializer is None: proj_initializer = initializer lookup_fn = (mul_adaptive_embedding_lookup if use_tpu else mask_adaptive_embedding_lookup) embeddings, shared_params = lookup_fn( x=dec_inp, n_token=n_token, d_embed=d_embed, d_proj=d_model, cutoffs=cutoffs, initializer=initializer, proj_initializer=proj_initializer, div_val= div_val, perms=input_perms, proj_same_dim=proj_same_dim) attn_mask = _create_mask(qlen, mlen, same_length) pos_seq = tf.range(klen - 1, -1, -1.0) if clamp_len > 0: pos_seq = tf.minimum(pos_seq, clamp_len) inv_freq = 1 / (10000 ** (tf.range(0, d_model, 2.0) / d_model)) pos_emb = positional_embedding(pos_seq, inv_freq) output = tf.layers.dropout(embeddings, dropout, training=is_training) pos_emb = tf.layers.dropout(pos_emb, dropout, training=is_training) if mems is None: mems = [None] * n_layer for i in range(n_layer): # cache new mems new_mems.append(_cache_mem(output, mems[i], mem_len)) with tf.variable_scope('layer_{}'.format(i)): output = rel_multihead_attn( w=output, r=pos_emb, r_w_bias=r_w_bias if not untie_r else r_w_bias[i], r_r_bias=r_r_bias if not untie_r else r_r_bias[i], attn_mask=attn_mask, mems=mems[i], d_model=d_model, n_head=n_head, d_head=d_head, dropout=dropout, dropatt=dropatt, is_training=is_training, kernel_initializer=initializer) output = positionwise_FF( inp=output, d_model=d_model, d_inner=d_inner, dropout=dropout, kernel_initializer=initializer, is_training=is_training) output = tf.layers.dropout(output, dropout, training=is_training) logsoftmax_fn = (mul_adaptive_logsoftmax if use_tpu else mask_adaptive_logsoftmax) loss = logsoftmax_fn( hidden=output, target=target, n_token=n_token, d_embed=d_embed, d_proj=d_model, cutoffs=cutoffs, params=shared_params, tie_projs=tie_projs, initializer=initializer, proj_initializer=proj_initializer, div_val=div_val, perms=target_perms, head_target=head_target, proj_same_dim=proj_same_dim) return loss, new_mems