import torch from torch.utils.data import TensorDataset import matplotlib.pyplot as plt def make_context_pairs(data: bytes, context_length: int) -> TensorDataset: data = torch.tensor(list(data), dtype=torch.long) sample_count = data.shape[0] - context_length x = data.unfold(0, context_length, 1)[:sample_count] y = data[context_length:] return TensorDataset(x, y) def print_distribution(from_to: tuple[int, int], probabilities: list[float]): plt.hist(range(from_to[0], from_to[1]), weights=probabilities) plt.show() def load_data(path: str) -> bytes: with open(path, "rb") as f: return f.read()