#!/bin/bash # Path LOCAL_DIR=../data/one-billion-words/ GSDATA= GSEXP= # TPU setting NUM_HOST=32 NUM_CORE=16 # TPUv2 -> 8 | TPUv3 -> 16 TEST_NUM_HOST=1 TEST_NUM_CORE=8 # TPUv2 -> 8 | TPUv3 -> 16 # Model DIV_VAL=4 N_LAYER=24 D_MODEL=1280 D_EMBED=1280 N_HEAD=16 D_HEAD=80 D_INNER=8192 # Training TGT_LEN=32 MEM_LEN=32 TRAIN_BSZ=512 VALID_BSZ=512 TRAIN_BSZ_PER_HOST=$((TRAIN_BSZ / NUM_HOST)) VALID_BSZ_PER_HOST=$((VALID_BSZ / NUM_HOST)) # Testing TEST_TGT_LEN=32 TEST_MEM_LEN=128 TEST_CLAMP_LEN=-1 TEST_BSZ=8 if [[ $1 == 'train_data' ]]; then python data_utils.py \ --data_dir=${LOCAL_DIR}/ \ --dataset=lm1b \ --tgt_len=${TGT_LEN} \ --per_host_train_bsz=${TRAIN_BSZ_PER_HOST} \ --per_host_valid_bsz=${VALID_BSZ_PER_HOST} \ --num_core_per_host=${NUM_CORE} \ --num_passes=10 \ --use_tpu=True \ ${@:2} SRC_PATTERN=train.bsz-${TRAIN_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}* gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/lm1b-tfrecords/ SRC_PATTERN=valid.bsz-${VALID_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}* gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/lm1b-tfrecords/ elif [[ $1 == 'test_data' ]]; then python data_utils.py \ --data_dir=${LOCAL_DIR}/ \ --dataset=lm1b \ --tgt_len=${TEST_TGT_LEN} \ --per_host_test_bsz=${TEST_BSZ} \ --num_core_per_host=${TEST_NUM_CORE} \ --num_passes=1 \ --use_tpu=True \ ${@:2} SRC_PATTERN=test.bsz-${TEST_BSZ}.tlen-${TEST_TGT_LEN}.core-${TEST_NUM_CORE}* gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/lm1b-tfrecords/ elif [[ $1 == 'train' ]]; then echo 'Run training...' python train.py \ --data_dir=${GSDATA}/lm1b-tfrecords \ --record_info_dir=${LOCAL_DIR}/tfrecords/ \ --corpus_info_path=${LOCAL_DIR}/corpus-info.json \ --model_dir=${GSEXP}/lm1b \ --div_val=${DIV_VAL} \ --untie_r=True \ --proj_share_all_but_first=False \ --proj_same_dim=False \ --n_layer=${N_LAYER} \ --d_model=${D_MODEL} \ --d_embed=${D_EMBED} \ --n_head=${N_HEAD} \ --d_head=${D_HEAD} \ --d_inner=${D_INNER} \ --dropout=0.05 \ --dropatt=0.05 \ --init_std=0.005 \ --learning_rate=0.0001 \ --warmup_steps=30000 \ --train_steps=1200000 \ --tgt_len=${TGT_LEN} \ --mem_len=${MEM_LEN} \ --train_batch_size=${TRAIN_BSZ} \ --num_hosts=${NUM_HOST} \ --num_core_per_host=${NUM_CORE} \ --iterations=1000 \ --save_steps=10000 \ --use_tpu=True \ --do_eval=False \ ${@:2} elif [[ $1 == 'eval' ]]; then echo 'Run evaluation...' python train.py \ --data_dir=${GSDATA}/lm1b-tfrecords \ --record_info_dir=${LOCAL_DIR}/tfrecords/ \ --corpus_info_path=${LOCAL_DIR}/corpus-info.json \ --model_dir=${GSEXP}/lm1b \ --div_val=${DIV_VAL} \ --untie_r=True \ --proj_share_all_but_first=False \ --proj_same_dim=False \ --n_layer=${N_LAYER} \ --d_model=${D_MODEL} \ --d_embed=${D_EMBED} \ --n_head=${N_HEAD} \ --d_head=${D_HEAD} \ --d_inner=${D_INNER} \ --tgt_len=${TEST_TGT_LEN} \ --mem_len=${TEST_MEM_LEN} \ --clamp_len=${TEST_CLAMP_LEN} \ --same_length=True \ --eval_batch_size=${TEST_BSZ} \ --num_host=${TEST_NUM_HOST} \ --num_core_per_host=${TEST_NUM_CORE} \ --use_tpu=True \ --do_train=False \ --do_eval_only=True \ --eval_split=test \ ${@:2} else echo 'unknown argment 1' fi