from argparse import ArgumentParser from math import ceil import torch from torch.utils.data import DataLoader from dataset_loaders import EnWik9DataSet, LoremIpsumDataset, Dataset from trainers import OptunaTrainer, Trainer, FullTrainer BATCH_SIZE = 64 DEVICE = torch.accelerator.current_accelerator().type if torch.accelerator.is_available() else "cpu" # hyper parameters context_length = 128 if __name__ == "__main__": print(f"Running on device: {DEVICE}...") parser = ArgumentParser() parser.add_argument("--method", choices=["optuna", "train"], required=True) parser.add_argument("--model-path", type=str, required=False) args = parser.parse_args() if args.method == "train": dataset: Dataset = EnWik9DataSet(transform=lambda x: x.to(DEVICE)) elif args.method == "optuna": dataset: Dataset = LoremIpsumDataset(transform=lambda x: x.to(DEVICE)) else: raise ValueError(f"Unknown method: {args.method}") dataset_length = len(dataset) training_size = ceil(0.8 * dataset_length) print(f"training set size = {training_size}, validation set size {dataset_length - training_size}") train_set, validate_set = torch.utils.data.random_split(dataset, [training_size, dataset_length - training_size]) training_loader = DataLoader(train_set, batch_size=BATCH_SIZE, shuffle=True) validation_loader = DataLoader(validate_set, batch_size=BATCH_SIZE, shuffle=False) loss_fn = torch.nn.CrossEntropyLoss() model = None if args.model_path is not None: model = torch.load(args.model_path) trainer: Trainer = OptunaTrainer() if args.method == "optuna" else FullTrainer() trainer.execute( model=model, train_loader=training_loader, validation_loader=validation_loader, loss_fn=loss_fn, n_epochs=200, device=DEVICE )